MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeulem Structured version   Visualization version   GIF version

Theorem trgcopyeulem 25497
Description: Lemma for trgcopyeu 25498. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
trgcopyeulem.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
trgcopyeulem.x (𝜑𝑋𝑃)
trgcopyeulem.y (𝜑𝑌𝑃)
trgcopyeulem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
trgcopyeulem.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
trgcopyeulem.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
trgcopyeulem.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
trgcopyeulem (𝜑𝑋 = 𝑌)
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐵,𝑎,𝑏,𝑡   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐸,𝑎,𝑏,𝑡   𝐹,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡   𝐾,𝑎   𝑂,𝑎,𝑏,𝑡   𝑋,𝑎,𝑏,𝑡   𝑌,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑏)

Proof of Theorem trgcopyeulem
StepHypRef Expression
1 trgcopy.p . 2 𝑃 = (Base‘𝐺)
2 trgcopy.m . 2 = (dist‘𝐺)
3 trgcopy.i . 2 𝐼 = (Itv‘𝐺)
4 trgcopy.g . 2 (𝜑𝐺 ∈ TarskiG)
5 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
6 trgcopy.b . . 3 (𝜑𝐵𝑃)
7 trgcopy.c . . 3 (𝜑𝐶𝑃)
8 trgcopy.a . . 3 (𝜑𝐴𝑃)
9 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
101, 5, 3, 4, 6, 7, 8, 9ncoltgdim2 25260 . 2 (𝜑𝐺DimTarskiG≥2)
11 eqid 2610 . 2 ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸))
12 trgcopy.d . . 3 (𝜑𝐷𝑃)
13 trgcopy.e . . 3 (𝜑𝐸𝑃)
14 trgcopy.f . . . 4 (𝜑𝐹𝑃)
15 trgcopy.2 . . . 4 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
161, 3, 5, 4, 12, 13, 14, 15ncolne1 25320 . . 3 (𝜑𝐷𝐸)
171, 3, 5, 4, 12, 13, 16tgelrnln 25325 . 2 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
18 trgcopyeulem.x . 2 (𝜑𝑋𝑃)
19 trgcopyeulem.y . 2 (𝜑𝑌𝑃)
20 eqid 2610 . . . . . . . . . 10 (pInvG‘𝐺) = (pInvG‘𝐺)
214ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG)
2217ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
23 simplr 788 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸))
241, 5, 3, 21, 22, 23tglnpt 25244 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑃)
25 eqid 2610 . . . . . . . . . 10 ((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡)
261, 2, 3, 4, 10, 11, 5, 17, 19lmicl 25478 . . . . . . . . . . 11 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2726ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2818ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑃)
2912ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝑃)
3013ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝑃)
31 eqid 2610 . . . . . . . . . . . . 13 (cgrG‘𝐺) = (cgrG‘𝐺)
3216ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝐸)
3332necomd 2837 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝐷)
341, 3, 5, 21, 30, 29, 24, 33, 23lncom 25317 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷))
3534orcd 406 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
361, 5, 3, 21, 30, 29, 24, 35colrot1 25254 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡))
37 trgcopyeulem.1 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
381, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp3 25217 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐴) = (𝑋 𝐷))
391, 2, 3, 4, 7, 8, 18, 12, 38tgcgrcomlr 25175 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 𝐶) = (𝐷 𝑋))
40 trgcopyeulem.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
411, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp3 25217 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐴) = (𝑌 𝐷))
421, 2, 3, 4, 7, 8, 19, 12, 41tgcgrcomlr 25175 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 𝐶) = (𝐷 𝑌))
4339, 42eqtr3d 2646 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 𝑋) = (𝐷 𝑌))
441, 2, 3, 4, 10, 11, 5, 17, 12, 19lmiiso 25489 . . . . . . . . . . . . . . 15 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 𝑌))
451, 3, 5, 4, 12, 13, 16tglinerflx1 25328 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ (𝐷𝐿𝐸))
461, 2, 3, 4, 10, 11, 5, 17, 12, 45lmicinv 25485 . . . . . . . . . . . . . . . 16 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷)
4746oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4843, 44, 473eqtr2d 2650 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4948ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
501, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp2 25216 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 𝐶) = (𝐸 𝑋))
511, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp2 25216 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 𝐶) = (𝐸 𝑌))
5250, 51eqtr3d 2646 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 𝑋) = (𝐸 𝑌))
531, 2, 3, 4, 10, 11, 5, 17, 13, 19lmiiso 25489 . . . . . . . . . . . . . . 15 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 𝑌))
541, 3, 5, 4, 12, 13, 16tglinerflx2 25329 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
551, 2, 3, 4, 10, 11, 5, 17, 13, 54lmicinv 25485 . . . . . . . . . . . . . . . 16 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸)
5655oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5752, 53, 563eqtr2d 2650 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5857ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
591, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58lncgr 25264 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 𝑋) = (𝑡 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
60 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
611, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60ismir 25354 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
6261eqcomd 2616 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋)
631, 2, 3, 5, 20, 21, 24, 25, 27, 62mircom 25358 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
6463eqcomd 2616 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋))
6510ad2antrr 758 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2)
661, 2, 3, 21, 65, 28, 27, 20, 24ismidb 25470 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡))
6764, 66mpbid 221 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)
6867, 23eqeltrd 2688 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
69 trgcopyeulem.o . . . . . . . . . 10 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
70 trgcopyeulem.4 . . . . . . . . . 10 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
71 trgcopyeulem.3 . . . . . . . . . . 11 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
721, 3, 5, 4, 17, 18, 69, 14, 71hpgcom 25459 . . . . . . . . . 10 (𝜑𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
731, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72hpgtr 25460 . . . . . . . . 9 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
741, 3, 5, 69, 4, 17, 19, 14, 70hpgne1 25453 . . . . . . . . . . 11 (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸))
751, 2, 3, 5, 4, 10, 17, 69, 11, 19, 74lmiopp 25494 . . . . . . . . . 10 (𝜑𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
761, 3, 5, 69, 4, 17, 19, 18, 26, 75lnopp2hpgb 25455 . . . . . . . . 9 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋))
7773, 76mpbird 246 . . . . . . . 8 (𝜑𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
781, 2, 3, 69, 18, 26islnopp 25431 . . . . . . . 8 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
7977, 78mpbid 221 . . . . . . 7 (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
8079simprd 478 . . . . . 6 (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
8168, 80r19.29a 3060 . . . . 5 (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
8221adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐺 ∈ TarskiG)
8322adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
841, 2, 3, 69, 5, 17, 4, 18, 26, 77oppne3 25435 . . . . . . . . . . . 12 (𝜑𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
851, 3, 5, 4, 18, 26, 84tgelrnln 25325 . . . . . . . . . . 11 (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8685ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8786adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8884ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
891, 3, 5, 21, 28, 27, 24, 88, 60btwnlng1 25314 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9023, 89elind 3760 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9190adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9254ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸 ∈ (𝐷𝐿𝐸))
931, 3, 5, 4, 18, 26, 84tglinerflx1 25328 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9493ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
95 simpr 476 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑡)
9679simplld 787 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
9796ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
98 nelne2 2879 . . . . . . . . . . . 12 ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡𝑋)
9923, 97, 98syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑋)
10099necomd 2837 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑡)
101100adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑡)
10264oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10358, 102eqtrd 2644 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
104103adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10530adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑃)
10624adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡𝑃)
10728adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑃)
1081, 2, 3, 5, 20, 82, 105, 106, 107israg 25392 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
109104, 108mpbird 246 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → ⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1101, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109ragperp 25412 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
11121adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐺 ∈ TarskiG)
11222adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
11386adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
11490adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
11545ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷 ∈ (𝐷𝐿𝐸))
11693ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
117 simpr 476 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑡)
118100adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑡)
11964oveq2d 6565 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12049, 119eqtrd 2644 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
121120adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12229adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑃)
12324adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡𝑃)
12428adantr 480 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑃)
1251, 2, 3, 5, 20, 111, 122, 123, 124israg 25392 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
126121, 125mpbird 246 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → ⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1271, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126ragperp 25412 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
128 neneor 2881 . . . . . . . . 9 (𝐸𝐷 → (𝐸𝑡𝐷𝑡))
12933, 128syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸𝑡𝐷𝑡))
130110, 127, 129mpjaodan 823 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
131130orcd 406 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
132131, 80r19.29a 3060 . . . . 5 (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
13381, 132jca 553 . . . 4 (𝜑 → ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
1341, 2, 3, 4, 10, 11, 5, 17, 18, 26islmib 25479 . . . 4 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
135133, 134mpbird 246 . . 3 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋))
136135eqcomd 2616 . 2 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
1371, 2, 3, 4, 10, 11, 5, 17, 18, 19, 136lmieq 25483 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  cin 3539   class class class wbr 4583  {copab 4642  ran crn 5039  cfv 5804  (class class class)co 6549  2c2 10947  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205  hlGchlg 25295  pInvGcmir 25347  ∟Gcrag 25388  ⟂Gcperpg 25390  hpGchpg 25449  midGcmid 25464  lInvGclmi 25465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-hlg 25296  df-mir 25348  df-rag 25389  df-perpg 25391  df-hpg 25450  df-mid 25466  df-lmi 25467
This theorem is referenced by:  trgcopyeu  25498  acopyeu  25525
  Copyright terms: Public domain W3C validator