MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnext Structured version   Visualization version   GIF version

Theorem lnext 25262
Description: Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.d = (dist‘𝐺)
lnext.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnext.2 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
Assertion
Ref Expression
lnext (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Distinct variable groups:   ,𝑐   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝑋,𝑐   𝑌,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐺(𝑐)   𝐿(𝑐)

Proof of Theorem lnext
StepHypRef Expression
1 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
2 lnxfr.d . . . . 5 = (dist‘𝐺)
3 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 lnxfr.a . . . . 5 (𝜑𝐴𝑃)
6 lnxfr.b . . . . 5 (𝜑𝐵𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
91, 2, 3, 4, 5, 6, 7, 8axtgsegcon 25163 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
109adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)))
11 lnxfr.r . . . . . 6 = (cgrG‘𝐺)
124ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐺 ∈ TarskiG)
13 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
1413ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑋𝑃)
157ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌𝑃)
168ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑍𝑃)
175ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐴𝑃)
186ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵𝑃)
19 simplr 788 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑐𝑃)
20 lnext.2 . . . . . . 7 (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))
2120ad3antrrr 762 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
22 simprr 792 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝐵 𝑐) = (𝑌 𝑍))
2322eqcomd 2616 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
24 simpllr 795 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
25 simprl 790 . . . . . . . 8 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → 𝐵 ∈ (𝐴𝐼𝑐))
261, 2, 3, 12, 14, 15, 16, 17, 18, 19, 24, 25, 21, 23tgcgrextend 25180 . . . . . . 7 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
271, 2, 3, 12, 14, 16, 17, 19, 26tgcgrcomlr 25175 . . . . . 6 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
281, 2, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 27trgcgr 25211 . . . . 5 ((((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
2928ex 449 . . . 4 (((𝜑𝑌 ∈ (𝑋𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3029reximdva 3000 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑌 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
3110, 30mpd 15 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
321, 2, 3, 4, 6, 5, 13, 8axtgsegcon 25163 . . . 4 (𝜑 → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
3332adantr 480 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)))
344ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐺 ∈ TarskiG)
3513ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋𝑃)
367ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑌𝑃)
378ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑍𝑃)
385ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴𝑃)
396ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐵𝑃)
40 simplr 788 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑐𝑃)
4120ad3antrrr 762 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑌) = (𝐴 𝐵))
42 simpllr 795 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝑋 ∈ (𝑌𝐼𝑍))
43 simprl 790 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → 𝐴 ∈ (𝐵𝐼𝑐))
441, 2, 3, 34, 35, 36, 38, 39, 41tgcgrcomlr 25175 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑋) = (𝐵 𝐴))
45 simprr 792 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝐴 𝑐) = (𝑋 𝑍))
4645eqcomd 2616 . . . . . . 7 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑋 𝑍) = (𝐴 𝑐))
471, 2, 3, 34, 36, 35, 37, 39, 38, 40, 42, 43, 44, 46tgcgrextend 25180 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑌 𝑍) = (𝐵 𝑐))
481, 2, 3, 34, 35, 37, 38, 40, 46tgcgrcomlr 25175 . . . . . 6 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → (𝑍 𝑋) = (𝑐 𝐴))
491, 2, 11, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48trgcgr 25211 . . . . 5 ((((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍))) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
5049ex 449 . . . 4 (((𝜑𝑋 ∈ (𝑌𝐼𝑍)) ∧ 𝑐𝑃) → ((𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5150reximdva 3000 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (∃𝑐𝑃 (𝐴 ∈ (𝐵𝐼𝑐) ∧ (𝐴 𝑐) = (𝑋 𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
5233, 51mpd 15 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
534adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
5413adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
558adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
567adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
575adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
586adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
59 simpr 476 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
6020adantr 480 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝑋 𝑌) = (𝐴 𝐵))
611, 2, 3, 11, 53, 54, 55, 56, 57, 58, 59, 60tgcgrxfr 25213 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩))
624ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐺 ∈ TarskiG)
6313ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑋𝑃)
648ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑍𝑃)
657ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑌𝑃)
665ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐴𝑃)
67 simplr 788 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝑐𝑃)
686ad3antrrr 762 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → 𝐵𝑃)
69 simprr 792 . . . . . 6 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)
701, 2, 3, 11, 62, 63, 64, 65, 66, 67, 68, 69cgr3swap23 25219 . . . . 5 ((((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) ∧ (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
7170ex 449 . . . 4 (((𝜑𝑍 ∈ (𝑋𝐼𝑌)) ∧ 𝑐𝑃) → ((𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7271reximdva 3000 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (∃𝑐𝑃 (𝑐 ∈ (𝐴𝐼𝐵) ∧ ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝑐𝐵”⟩) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩))
7361, 72mpd 15 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
74 lnext.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
75 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
761, 75, 3, 4, 13, 8, 7tgcolg 25249 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
7774, 76mpbid 221 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
7831, 52, 73, 77mpjao3dan 1387 1 (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206
This theorem is referenced by:  legov  25280  legov2  25281  legtrd  25284  symquadlem  25384  trgcopy  25496  cgrg3col4  25534
  Copyright terms: Public domain W3C validator