MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Visualization version   GIF version

Theorem legov 25280
Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Distinct variable groups:   𝑧,   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐼   𝑧,𝑃   𝑧,𝐺   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem legov
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
61, 2, 3, 4, 5legval 25279 . . . 4 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
76breqd 4594 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ (𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷)))
8 ovex 6577 . . . 4 (𝐴 𝐵) ∈ V
9 ovex 6577 . . . 4 (𝐶 𝐷) ∈ V
10 simpr 476 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑓 = (𝐶 𝐷))
1110eqeq1d 2612 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑓 = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
12 simpl 472 . . . . . . . . 9 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑒 = (𝐴 𝐵))
1312eqeq1d 2612 . . . . . . . 8 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑒 = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
1413anbi2d 736 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1514rexbidv 3034 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1611, 15anbi12d 743 . . . . 5 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
17162rexbidv 3039 . . . 4 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
18 eqid 2610 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))}
198, 9, 17, 18braba 4917 . . 3 ((𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
207, 19syl6bb 275 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
21 anass 679 . . . . . . . 8 (((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ (((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))))
2221anbi1i 727 . . . . . . 7 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ↔ ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃))
23 eqid 2610 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
245ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐺 ∈ TarskiG)
2524adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐺 ∈ TarskiG)
26 simp-5r 805 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑐𝑃)
2726adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑐𝑃)
28 simpllr 795 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥𝑃)
29 simp-4r 803 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑑𝑃)
3029adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑑𝑃)
31 legov.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
3231ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐶𝑃)
3332adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐶𝑃)
34 simprl 790 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧𝑃)
35 legov.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3635ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐷𝑃)
3736adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐷𝑃)
38 simprr 792 . . . . . . . . . . . 12 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 25219 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑥𝑑”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
40 simprl 790 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥 ∈ (𝑐𝐼𝑑))
4140adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥 ∈ (𝑐𝐼𝑑))
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 25225 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧 ∈ (𝐶𝐼𝐷))
43 simplrr 797 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝑐 𝑥))
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 25215 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑐 𝑥) = (𝐶 𝑧))
4543, 44eqtrd 2644 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝐶 𝑧))
4642, 45jca 553 . . . . . . . . 9 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
47 eqid 2610 . . . . . . . . . 10 (LineG‘𝐺) = (LineG‘𝐺)
48 simplr 788 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥𝑃)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 25252 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑑 ∈ (𝑐(LineG‘𝐺)𝑥) ∨ 𝑐 = 𝑥))
50 simpllr 795 . . . . . . . . . . 11 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝐶 𝐷) = (𝑐 𝑑))
5150eqcomd 2616 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑐 𝑑) = (𝐶 𝐷))
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 25262 . . . . . . . . 9 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
5346, 52reximddv 3001 . . . . . . . 8 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5453adantllr 751 . . . . . . 7 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5522, 54sylanbr 489 . . . . . 6 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
56 simprr 792 . . . . . . 7 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
57 eleq1 2676 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑐𝐼𝑑)))
58 oveq2 6557 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑐 𝑥) = (𝑐 𝑧))
5958eqeq2d 2620 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 𝐵) = (𝑐 𝑥) ↔ (𝐴 𝐵) = (𝑐 𝑧)))
6057, 59anbi12d 743 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
6160cbvrexv 3148 . . . . . . 7 (∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
6256, 61sylibr 223 . . . . . 6 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)))
6355, 62r19.29a 3060 . . . . 5 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
6463adantl3r 782 . . . 4 (((((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
65 simpr 476 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
66 oveq1 6556 . . . . . . . 8 (𝑐 = 𝑥 → (𝑐 𝑑) = (𝑥 𝑑))
6766eqeq2d 2620 . . . . . . 7 (𝑐 = 𝑥 → ((𝐶 𝐷) = (𝑐 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑑)))
68 oveq1 6556 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝐼𝑑) = (𝑥𝐼𝑑))
6968eleq2d 2673 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑧 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑑)))
70 oveq1 6556 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐 𝑧) = (𝑥 𝑧))
7170eqeq2d 2620 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐴 𝐵) = (𝑐 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
7269, 71anbi12d 743 . . . . . . . 8 (𝑐 = 𝑥 → ((𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7372rexbidv 3034 . . . . . . 7 (𝑐 = 𝑥 → (∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7467, 73anbi12d 743 . . . . . 6 (𝑐 = 𝑥 → (((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
75 oveq2 6557 . . . . . . . 8 (𝑑 = 𝑦 → (𝑥 𝑑) = (𝑥 𝑦))
7675eqeq2d 2620 . . . . . . 7 (𝑑 = 𝑦 → ((𝐶 𝐷) = (𝑥 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
77 oveq2 6557 . . . . . . . . . 10 (𝑑 = 𝑦 → (𝑥𝐼𝑑) = (𝑥𝐼𝑦))
7877eleq2d 2673 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑧 ∈ (𝑥𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
7978anbi1d 737 . . . . . . . 8 (𝑑 = 𝑦 → ((𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8079rexbidv 3034 . . . . . . 7 (𝑑 = 𝑦 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8176, 80anbi12d 743 . . . . . 6 (𝑑 = 𝑦 → (((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
8274, 81cbvrex2v 3156 . . . . 5 (∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8365, 82sylibr 223 . . . 4 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
8464, 83r19.29vva 3062 . . 3 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
8531adantr 480 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
8635adantr 480 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
87 eqidd 2611 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝐷) = (𝐶 𝐷))
88 simpr 476 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
89 oveq1 6556 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 𝑦) = (𝐶 𝑦))
9089eqeq2d 2620 . . . . . 6 (𝑥 = 𝐶 → ((𝐶 𝐷) = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝑦)))
91 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐼𝑦) = (𝐶𝐼𝑦))
9291eleq2d 2673 . . . . . . . 8 (𝑥 = 𝐶 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝑦)))
93 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥 𝑧) = (𝐶 𝑧))
9493eqeq2d 2620 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 𝐵) = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
9592, 94anbi12d 743 . . . . . . 7 (𝑥 = 𝐶 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9695rexbidv 3034 . . . . . 6 (𝑥 = 𝐶 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9790, 96anbi12d 743 . . . . 5 (𝑥 = 𝐶 → (((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
98 oveq2 6557 . . . . . . 7 (𝑦 = 𝐷 → (𝐶 𝑦) = (𝐶 𝐷))
9998eqeq2d 2620 . . . . . 6 (𝑦 = 𝐷 → ((𝐶 𝐷) = (𝐶 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝐷)))
100 oveq2 6557 . . . . . . . . 9 (𝑦 = 𝐷 → (𝐶𝐼𝑦) = (𝐶𝐼𝐷))
101100eleq2d 2673 . . . . . . . 8 (𝑦 = 𝐷 → (𝑧 ∈ (𝐶𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
102101anbi1d 737 . . . . . . 7 (𝑦 = 𝐷 → ((𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
103102rexbidv 3034 . . . . . 6 (𝑦 = 𝐷 → (∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10499, 103anbi12d 743 . . . . 5 (𝑦 = 𝐷 → (((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
10597, 104rspc2ev 3295 . . . 4 ((𝐶𝑃𝐷𝑃 ∧ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10685, 86, 87, 88, 105syl112anc 1322 . . 3 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10784, 106impbida 873 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10820, 107bitrd 267 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  {copab 4642  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205  ≤Gcleg 25277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278
This theorem is referenced by:  legov2  25281  legid  25282  btwnleg  25283  legtrd  25284  legtri3  25285  legtrid  25286  leg0  25287  mideulem  25428  opphllem3  25441
  Copyright terms: Public domain W3C validator