Step | Hyp | Ref
| Expression |
1 | | df-perpg 25391 |
. . . . . . 7
⊢ ⟂G
= (𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
2 | 1 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))})) |
3 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
4 | 3 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺)) |
5 | | perpln.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (LineG‘𝐺) |
6 | 4, 5 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿) |
7 | 6 | rneqd 5274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿) |
8 | 7 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿)) |
9 | 7 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿)) |
10 | 8, 9 | anbi12d 743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿))) |
11 | 3 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺)) |
12 | 11 | eleq2d 2673 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
13 | 12 | ralbidv 2969 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
14 | 13 | rexralbidv 3040 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
15 | 10, 14 | anbi12d 743 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) |
16 | 15 | opabbidv 4648 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
17 | | perpln.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
18 | | elex 3185 |
. . . . . . 7
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
20 | | fvex 6113 |
. . . . . . . . . 10
⊢
(LineG‘𝐺)
∈ V |
21 | 5, 20 | eqeltri 2684 |
. . . . . . . . 9
⊢ 𝐿 ∈ V |
22 | | rnexg 6990 |
. . . . . . . . 9
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) |
23 | 21, 22 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐿 ∈ V) |
24 | | xpexg 6858 |
. . . . . . . 8
⊢ ((ran
𝐿 ∈ V ∧ ran 𝐿 ∈ V) → (ran 𝐿 × ran 𝐿) ∈ V) |
25 | 23, 23, 24 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V) |
26 | | opabssxp 5116 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿) |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)) |
28 | 25, 27 | ssexd 4733 |
. . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ∈ V) |
29 | 2, 16, 19, 28 | fvmptd 6197 |
. . . . 5
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
30 | | anass 679 |
. . . . . 6
⊢ (((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) ↔ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) |
31 | 30 | opabbii 4649 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))} |
32 | 29, 31 | syl6eq 2660 |
. . . 4
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))}) |
33 | 32 | dmeqd 5248 |
. . 3
⊢ (𝜑 → dom (⟂G‘𝐺) = dom {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))}) |
34 | | dmopabss 5258 |
. . 3
⊢ dom
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))} ⊆ ran 𝐿 |
35 | 33, 34 | syl6eqss 3618 |
. 2
⊢ (𝜑 → dom (⟂G‘𝐺) ⊆ ran 𝐿) |
36 | | relopab 5169 |
. . . . . 6
⊢ Rel
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} |
37 | 29 | releqd 5126 |
. . . . . 6
⊢ (𝜑 → (Rel
(⟂G‘𝐺) ↔
Rel {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) |
38 | 36, 37 | mpbiri 247 |
. . . . 5
⊢ (𝜑 → Rel (⟂G‘𝐺)) |
39 | | perpln.2 |
. . . . 5
⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |
40 | | brrelex12 5079 |
. . . . 5
⊢ ((Rel
(⟂G‘𝐺) ∧
𝐴(⟂G‘𝐺)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
41 | 38, 39, 40 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
42 | 41 | simpld 474 |
. . 3
⊢ (𝜑 → 𝐴 ∈ V) |
43 | 41 | simprd 478 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
44 | | breldmg 5252 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴(⟂G‘𝐺)𝐵) → 𝐴 ∈ dom (⟂G‘𝐺)) |
45 | 42, 43, 39, 44 | syl3anc 1318 |
. 2
⊢ (𝜑 → 𝐴 ∈ dom (⟂G‘𝐺)) |
46 | 35, 45 | sseldd 3569 |
1
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |