MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Visualization version   GIF version

Theorem torsubg 18080
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
torsubg (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))

Proof of Theorem torsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5404 . . . 4 (𝑂 “ ℕ) ⊆ dom 𝑂
2 eqid 2610 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 torsubg.1 . . . . . 6 𝑂 = (od‘𝐺)
42, 3odf 17779 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
54fdmi 5965 . . . 4 dom 𝑂 = (Base‘𝐺)
61, 5sseqtri 3600 . . 3 (𝑂 “ ℕ) ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ⊆ (Base‘𝐺))
8 ablgrp 18021 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9 eqid 2610 . . . . . 6 (0g𝐺) = (0g𝐺)
102, 9grpidcl 17273 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
118, 10syl 17 . . . 4 (𝐺 ∈ Abel → (0g𝐺) ∈ (Base‘𝐺))
123, 9od1 17799 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
138, 12syl 17 . . . . 5 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) = 1)
14 1nn 10908 . . . . 5 1 ∈ ℕ
1513, 14syl6eqel 2696 . . . 4 (𝐺 ∈ Abel → (𝑂‘(0g𝐺)) ∈ ℕ)
16 ffn 5958 . . . . . 6 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
174, 16ax-mp 5 . . . . 5 𝑂 Fn (Base‘𝐺)
18 elpreima 6245 . . . . 5 (𝑂 Fn (Base‘𝐺) → ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ)))
1917, 18ax-mp 5 . . . 4 ((0g𝐺) ∈ (𝑂 “ ℕ) ↔ ((0g𝐺) ∈ (Base‘𝐺) ∧ (𝑂‘(0g𝐺)) ∈ ℕ))
2011, 15, 19sylanbrc 695 . . 3 (𝐺 ∈ Abel → (0g𝐺) ∈ (𝑂 “ ℕ))
21 ne0i 3880 . . 3 ((0g𝐺) ∈ (𝑂 “ ℕ) → (𝑂 “ ℕ) ≠ ∅)
2220, 21syl 17 . 2 (𝐺 ∈ Abel → (𝑂 “ ℕ) ≠ ∅)
238ad2antrr 758 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Grp)
246sseli 3564 . . . . . . . 8 (𝑥 ∈ (𝑂 “ ℕ) → 𝑥 ∈ (Base‘𝐺))
2524ad2antlr 759 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑥 ∈ (Base‘𝐺))
266sseli 3564 . . . . . . . 8 (𝑦 ∈ (𝑂 “ ℕ) → 𝑦 ∈ (Base‘𝐺))
2726adantl 481 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝑦 ∈ (Base‘𝐺))
28 eqid 2610 . . . . . . . 8 (+g𝐺) = (+g𝐺)
292, 28grpcl 17253 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
3023, 25, 27, 29syl3anc 1318 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
31 0nnn 10929 . . . . . . . . 9 ¬ 0 ∈ ℕ
322, 3odcl 17778 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (Base‘𝐺) → (𝑂𝑥) ∈ ℕ0)
3325, 32syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ0)
3433nn0zd 11356 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℤ)
352, 3odcl 17778 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (Base‘𝐺) → (𝑂𝑦) ∈ ℕ0)
3627, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ0)
3736nn0zd 11356 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℤ)
3834, 37gcdcld 15068 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℕ0)
3938nn0cnd 11230 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) gcd (𝑂𝑦)) ∈ ℂ)
4039mul02d 10113 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) = 0)
4140breq1d 4593 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ 0 ∥ ((𝑂𝑥) · (𝑂𝑦))))
4234, 37zmulcld 11364 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ)
43 0dvds 14840 . . . . . . . . . . . 12 (((𝑂𝑥) · (𝑂𝑦)) ∈ ℤ → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4442, 43syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (0 ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
4541, 44bitrd 267 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ ((𝑂𝑥) · (𝑂𝑦)) = 0))
46 elpreima 6245 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ)))
4717, 46ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑂 “ ℕ) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝑂𝑥) ∈ ℕ))
4847simprbi 479 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑂 “ ℕ) → (𝑂𝑥) ∈ ℕ)
4948ad2antlr 759 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
50 elpreima 6245 . . . . . . . . . . . . . . 15 (𝑂 Fn (Base‘𝐺) → (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ)))
5117, 50ax-mp 5 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑂 “ ℕ) ↔ (𝑦 ∈ (Base‘𝐺) ∧ (𝑂𝑦) ∈ ℕ))
5251simprbi 479 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑂 “ ℕ) → (𝑂𝑦) ∈ ℕ)
5352adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂𝑦) ∈ ℕ)
5449, 53nnmulcld 10945 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ)
55 eleq1 2676 . . . . . . . . . . 11 (((𝑂𝑥) · (𝑂𝑦)) = 0 → (((𝑂𝑥) · (𝑂𝑦)) ∈ ℕ ↔ 0 ∈ ℕ))
5654, 55syl5ibcom 234 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (((𝑂𝑥) · (𝑂𝑦)) = 0 → 0 ∈ ℕ))
5745, 56sylbid 229 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) → 0 ∈ ℕ))
5831, 57mtoi 189 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
59 simpll 786 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → 𝐺 ∈ Abel)
603, 2, 28odadd1 18074 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
6159, 25, 27, 60syl3anc 1318 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)))
62 oveq1 6556 . . . . . . . . . 10 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → ((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) = (0 · ((𝑂𝑥) gcd (𝑂𝑦))))
6362breq1d 4593 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (((𝑂‘(𝑥(+g𝐺)𝑦)) · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦)) ↔ (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6461, 63syl5ibcom 234 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) = 0 → (0 · ((𝑂𝑥) gcd (𝑂𝑦))) ∥ ((𝑂𝑥) · (𝑂𝑦))))
6558, 64mtod 188 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ¬ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0)
662, 3odcl 17778 . . . . . . . . . 10 ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
6730, 66syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0)
68 elnn0 11171 . . . . . . . . 9 ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ0 ↔ ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
6967, 68sylib 207 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → ((𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ ∨ (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7069ord 391 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (¬ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ → (𝑂‘(𝑥(+g𝐺)𝑦)) = 0))
7165, 70mt3d 139 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)
72 elpreima 6245 . . . . . . 7 (𝑂 Fn (Base‘𝐺) → ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ)))
7317, 72ax-mp 5 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑂‘(𝑥(+g𝐺)𝑦)) ∈ ℕ))
7430, 71, 73sylanbrc 695 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) ∧ 𝑦 ∈ (𝑂 “ ℕ)) → (𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
7574ralrimiva 2949 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ))
76 eqid 2610 . . . . . . 7 (invg𝐺) = (invg𝐺)
772, 76grpinvcl 17290 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
788, 24, 77syl2an 493 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
793, 76, 2odinv 17801 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
808, 24, 79syl2an 493 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) = (𝑂𝑥))
8148adantl 481 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂𝑥) ∈ ℕ)
8280, 81eqeltrd 2688 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)
83 elpreima 6245 . . . . . 6 (𝑂 Fn (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ)))
8417, 83ax-mp 5 . . . . 5 (((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ) ↔ (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) ∧ (𝑂‘((invg𝐺)‘𝑥)) ∈ ℕ))
8578, 82, 84sylanbrc 695 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ))
8675, 85jca 553 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (𝑂 “ ℕ)) → (∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
8786ralrimiva 2949 . 2 (𝐺 ∈ Abel → ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))
882, 28, 76issubg2 17432 . . 3 (𝐺 ∈ Grp → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
898, 88syl 17 . 2 (𝐺 ∈ Abel → ((𝑂 “ ℕ) ∈ (SubGrp‘𝐺) ↔ ((𝑂 “ ℕ) ⊆ (Base‘𝐺) ∧ (𝑂 “ ℕ) ≠ ∅ ∧ ∀𝑥 ∈ (𝑂 “ ℕ)(∀𝑦 ∈ (𝑂 “ ℕ)(𝑥(+g𝐺)𝑦) ∈ (𝑂 “ ℕ) ∧ ((invg𝐺)‘𝑥) ∈ (𝑂 “ ℕ)))))
907, 22, 87, 89mpbir3and 1238 1 (𝐺 ∈ Abel → (𝑂 “ ℕ) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874   class class class wbr 4583  ccnv 5037  dom cdm 5038  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  0cn0 11169  cz 11254  cdvds 14821   gcd cgcd 15054  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  SubGrpcsubg 17411  odcod 17767  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-od 17771  df-cmn 18018  df-abl 18019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator