MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Unicode version

Theorem torsubg 16733
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1  |-  O  =  ( od `  G
)
Assertion
Ref Expression
torsubg  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )

Proof of Theorem torsubg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5363 . . . 4  |-  ( `' O " NN ) 
C_  dom  O
2 eqid 2467 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
3 torsubg.1 . . . . . 6  |-  O  =  ( od `  G
)
42, 3odf 16434 . . . . 5  |-  O :
( Base `  G ) --> NN0
54fdmi 5742 . . . 4  |-  dom  O  =  ( Base `  G
)
61, 5sseqtri 3541 . . 3  |-  ( `' O " NN ) 
C_  ( Base `  G
)
76a1i 11 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN ) 
C_  ( Base `  G
) )
8 ablgrp 16676 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
9 eqid 2467 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
102, 9grpidcl 15950 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
118, 10syl 16 . . . 4  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( Base `  G
) )
123, 9od1 16454 . . . . . 6  |-  ( G  e.  Grp  ->  ( O `  ( 0g `  G ) )  =  1 )
138, 12syl 16 . . . . 5  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  =  1 )
14 1nn 10559 . . . . 5  |-  1  e.  NN
1513, 14syl6eqel 2563 . . . 4  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  e.  NN )
16 ffn 5737 . . . . . 6  |-  ( O : ( Base `  G
) --> NN0  ->  O  Fn  ( Base `  G )
)
174, 16ax-mp 5 . . . . 5  |-  O  Fn  ( Base `  G )
18 elpreima 6008 . . . . 5  |-  ( O  Fn  ( Base `  G
)  ->  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g
`  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) ) )
1917, 18ax-mp 5 . . . 4  |-  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g `  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) )
2011, 15, 19sylanbrc 664 . . 3  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( `' O " NN ) )
21 ne0i 3796 . . 3  |-  ( ( 0g `  G )  e.  ( `' O " NN )  ->  ( `' O " NN )  =/=  (/) )
2220, 21syl 16 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN )  =/=  (/) )
238ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Grp )
246sseli 3505 . . . . . . . 8  |-  ( x  e.  ( `' O " NN )  ->  x  e.  ( Base `  G
) )
2524ad2antlr 726 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  x  e.  ( Base `  G
) )
266sseli 3505 . . . . . . . 8  |-  ( y  e.  ( `' O " NN )  ->  y  e.  ( Base `  G
) )
2726adantl 466 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  y  e.  ( Base `  G
) )
28 eqid 2467 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
292, 28grpcl 15935 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
3023, 25, 27, 29syl3anc 1228 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
31 0nnn 10579 . . . . . . . . 9  |-  -.  0  e.  NN
322, 3odcl 16433 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( Base `  G
)  ->  ( O `  x )  e.  NN0 )
3325, 32syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN0 )
3433nn0zd 10976 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  ZZ )
352, 3odcl 16433 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Base `  G
)  ->  ( O `  y )  e.  NN0 )
3627, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN0 )
3736nn0zd 10976 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  ZZ )
3834, 37gcdcld 14032 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e. 
NN0 )
3938nn0cnd 10866 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e.  CC )
4039mul02d 9789 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) )  =  0 )
4140breq1d 4463 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  0  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
4234, 37zmulcld 10984 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  ZZ )
43 0dvds 13882 . . . . . . . . . . . 12  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  e.  ZZ  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4442, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4541, 44bitrd 253 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
46 elpreima 6008 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) ) )
4717, 46ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) )
4847simprbi 464 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' O " NN )  ->  ( O `  x )  e.  NN )
4948ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
50 elpreima 6008 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) ) )
5117, 50ax-mp 5 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) )
5251simprbi 464 . . . . . . . . . . . . 13  |-  ( y  e.  ( `' O " NN )  ->  ( O `  y )  e.  NN )
5352adantl 466 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN )
5449, 53nnmulcld 10595 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  NN )
55 eleq1 2539 . . . . . . . . . . 11  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  =  0  ->  (
( ( O `  x )  x.  ( O `  y )
)  e.  NN  <->  0  e.  NN ) )
5654, 55syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( ( O `  x )  x.  ( O `  y )
)  =  0  -> 
0  e.  NN ) )
5745, 56sylbid 215 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  ->  0  e.  NN ) )
5831, 57mtoi 178 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) )
59 simpll 753 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Abel )
603, 2, 28odadd1 16727 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( ( O `  ( x
( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y )
) )  ||  (
( O `  x
)  x.  ( O `
 y ) ) )
6159, 25, 27, 60syl3anc 1228 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) )
62 oveq1 6302 . . . . . . . . . 10  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  =  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) )
6362breq1d 4463 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( ( O `  ( x ( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( 0  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
6461, 63syl5ibcom 220 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  =  0  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) ) )
6558, 64mtod 177 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( O `  ( x ( +g  `  G
) y ) )  =  0 )
662, 3odcl 16433 . . . . . . . . . 10  |-  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  ->  ( O `  ( x ( +g  `  G ) y ) )  e.  NN0 )
6730, 66syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e. 
NN0 )
68 elnn0 10809 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  e.  NN0  <->  ( ( O `
 ( x ( +g  `  G ) y ) )  e.  NN  \/  ( O `
 ( x ( +g  `  G ) y ) )  =  0 ) )
6967, 68sylib 196 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  e.  NN  \/  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7069ord 377 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( -.  ( O `  (
x ( +g  `  G
) y ) )  e.  NN  ->  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7165, 70mt3d 125 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e.  NN )
72 elpreima 6008 . . . . . . 7  |-  ( O  Fn  ( Base `  G
)  ->  ( (
x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) ) )
7317, 72ax-mp 5 . . . . . 6  |-  ( ( x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) )
7430, 71, 73sylanbrc 664 . . . . 5  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( `' O " NN ) )
7574ralrimiva 2881 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN ) )
76 eqid 2467 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
772, 76grpinvcl 15967 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  x
)  e.  ( Base `  G ) )
788, 24, 77syl2an 477 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( invg `  G ) `  x
)  e.  ( Base `  G ) )
793, 76, 2odinv 16456 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( O `  (
( invg `  G ) `  x
) )  =  ( O `  x ) )
808, 24, 79syl2an 477 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( invg `  G ) `
 x ) )  =  ( O `  x ) )
8148adantl 466 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
8280, 81eqeltrd 2555 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( invg `  G ) `
 x ) )  e.  NN )
83 elpreima 6008 . . . . . 6  |-  ( O  Fn  ( Base `  G
)  ->  ( (
( invg `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( invg `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( invg `  G ) `  x
) )  e.  NN ) ) )
8417, 83ax-mp 5 . . . . 5  |-  ( ( ( invg `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( invg `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( invg `  G ) `  x
) )  e.  NN ) )
8578, 82, 84sylanbrc 664 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( invg `  G ) `  x
)  e.  ( `' O " NN ) )
8675, 85jca 532 . . 3  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  (
( invg `  G ) `  x
)  e.  ( `' O " NN ) ) )
8786ralrimiva 2881 . 2  |-  ( G  e.  Abel  ->  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) )
882, 28, 76issubg2 16088 . . 3  |-  ( G  e.  Grp  ->  (
( `' O " NN )  e.  (SubGrp `  G )  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
898, 88syl 16 . 2  |-  ( G  e.  Abel  ->  ( ( `' O " NN )  e.  (SubGrp `  G
)  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
907, 22, 87, 89mpbir3and 1179 1  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817    C_ wss 3481   (/)c0 3790   class class class wbr 4453   `'ccnv 5004   dom cdm 5005   "cima 5008    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   0cc0 9504   1c1 9505    x. cmul 9509   NNcn 10548   NN0cn0 10807   ZZcz 10876    || cdivides 13864    gcd cgcd 14020   Basecbs 14507   +g cplusg 14572   0gc0g 14712   Grpcgrp 15925   invgcminusg 15926  SubGrpcsubg 16067   odcod 16422   Abelcabl 16672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-sbg 15931  df-mulg 15932  df-subg 16070  df-od 16426  df-cmn 16673  df-abl 16674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator