MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Unicode version

Theorem torsubg 16339
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1  |-  O  =  ( od `  G
)
Assertion
Ref Expression
torsubg  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )

Proof of Theorem torsubg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5192 . . . 4  |-  ( `' O " NN ) 
C_  dom  O
2 eqid 2443 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
3 torsubg.1 . . . . . 6  |-  O  =  ( od `  G
)
42, 3odf 16043 . . . . 5  |-  O :
( Base `  G ) --> NN0
54fdmi 5567 . . . 4  |-  dom  O  =  ( Base `  G
)
61, 5sseqtri 3391 . . 3  |-  ( `' O " NN ) 
C_  ( Base `  G
)
76a1i 11 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN ) 
C_  ( Base `  G
) )
8 ablgrp 16285 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
9 eqid 2443 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
102, 9grpidcl 15569 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
118, 10syl 16 . . . 4  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( Base `  G
) )
123, 9od1 16063 . . . . . 6  |-  ( G  e.  Grp  ->  ( O `  ( 0g `  G ) )  =  1 )
138, 12syl 16 . . . . 5  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  =  1 )
14 1nn 10336 . . . . 5  |-  1  e.  NN
1513, 14syl6eqel 2531 . . . 4  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  e.  NN )
16 ffn 5562 . . . . . 6  |-  ( O : ( Base `  G
) --> NN0  ->  O  Fn  ( Base `  G )
)
174, 16ax-mp 5 . . . . 5  |-  O  Fn  ( Base `  G )
18 elpreima 5826 . . . . 5  |-  ( O  Fn  ( Base `  G
)  ->  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g
`  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) ) )
1917, 18ax-mp 5 . . . 4  |-  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g `  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) )
2011, 15, 19sylanbrc 664 . . 3  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( `' O " NN ) )
21 ne0i 3646 . . 3  |-  ( ( 0g `  G )  e.  ( `' O " NN )  ->  ( `' O " NN )  =/=  (/) )
2220, 21syl 16 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN )  =/=  (/) )
238ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Grp )
246sseli 3355 . . . . . . . 8  |-  ( x  e.  ( `' O " NN )  ->  x  e.  ( Base `  G
) )
2524ad2antlr 726 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  x  e.  ( Base `  G
) )
266sseli 3355 . . . . . . . 8  |-  ( y  e.  ( `' O " NN )  ->  y  e.  ( Base `  G
) )
2726adantl 466 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  y  e.  ( Base `  G
) )
28 eqid 2443 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
292, 28grpcl 15554 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
3023, 25, 27, 29syl3anc 1218 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
31 0nnn 10356 . . . . . . . . 9  |-  -.  0  e.  NN
322, 3odcl 16042 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( Base `  G
)  ->  ( O `  x )  e.  NN0 )
3325, 32syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN0 )
3433nn0zd 10748 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  ZZ )
352, 3odcl 16042 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Base `  G
)  ->  ( O `  y )  e.  NN0 )
3627, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN0 )
3736nn0zd 10748 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  ZZ )
3834, 37gcdcld 13705 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e. 
NN0 )
3938nn0cnd 10641 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e.  CC )
4039mul02d 9570 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) )  =  0 )
4140breq1d 4305 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  0  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
4234, 37zmulcld 10756 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  ZZ )
43 0dvds 13556 . . . . . . . . . . . 12  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  e.  ZZ  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4442, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4541, 44bitrd 253 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
46 elpreima 5826 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) ) )
4717, 46ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) )
4847simprbi 464 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' O " NN )  ->  ( O `  x )  e.  NN )
4948ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
50 elpreima 5826 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) ) )
5117, 50ax-mp 5 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) )
5251simprbi 464 . . . . . . . . . . . . 13  |-  ( y  e.  ( `' O " NN )  ->  ( O `  y )  e.  NN )
5352adantl 466 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN )
5449, 53nnmulcld 10372 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  NN )
55 eleq1 2503 . . . . . . . . . . 11  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  =  0  ->  (
( ( O `  x )  x.  ( O `  y )
)  e.  NN  <->  0  e.  NN ) )
5654, 55syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( ( O `  x )  x.  ( O `  y )
)  =  0  -> 
0  e.  NN ) )
5745, 56sylbid 215 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  ->  0  e.  NN ) )
5831, 57mtoi 178 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) )
59 simpll 753 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Abel )
603, 2, 28odadd1 16333 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( ( O `  ( x
( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y )
) )  ||  (
( O `  x
)  x.  ( O `
 y ) ) )
6159, 25, 27, 60syl3anc 1218 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) )
62 oveq1 6101 . . . . . . . . . 10  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  =  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) )
6362breq1d 4305 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( ( O `  ( x ( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( 0  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
6461, 63syl5ibcom 220 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  =  0  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) ) )
6558, 64mtod 177 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( O `  ( x ( +g  `  G
) y ) )  =  0 )
662, 3odcl 16042 . . . . . . . . . 10  |-  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  ->  ( O `  ( x ( +g  `  G ) y ) )  e.  NN0 )
6730, 66syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e. 
NN0 )
68 elnn0 10584 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  e.  NN0  <->  ( ( O `
 ( x ( +g  `  G ) y ) )  e.  NN  \/  ( O `
 ( x ( +g  `  G ) y ) )  =  0 ) )
6967, 68sylib 196 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  e.  NN  \/  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7069ord 377 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( -.  ( O `  (
x ( +g  `  G
) y ) )  e.  NN  ->  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7165, 70mt3d 125 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e.  NN )
72 elpreima 5826 . . . . . . 7  |-  ( O  Fn  ( Base `  G
)  ->  ( (
x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) ) )
7317, 72ax-mp 5 . . . . . 6  |-  ( ( x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) )
7430, 71, 73sylanbrc 664 . . . . 5  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( `' O " NN ) )
7574ralrimiva 2802 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN ) )
76 eqid 2443 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
772, 76grpinvcl 15586 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  x
)  e.  ( Base `  G ) )
788, 24, 77syl2an 477 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( invg `  G ) `  x
)  e.  ( Base `  G ) )
793, 76, 2odinv 16065 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( O `  (
( invg `  G ) `  x
) )  =  ( O `  x ) )
808, 24, 79syl2an 477 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( invg `  G ) `
 x ) )  =  ( O `  x ) )
8148adantl 466 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
8280, 81eqeltrd 2517 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( invg `  G ) `
 x ) )  e.  NN )
83 elpreima 5826 . . . . . 6  |-  ( O  Fn  ( Base `  G
)  ->  ( (
( invg `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( invg `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( invg `  G ) `  x
) )  e.  NN ) ) )
8417, 83ax-mp 5 . . . . 5  |-  ( ( ( invg `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( invg `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( invg `  G ) `  x
) )  e.  NN ) )
8578, 82, 84sylanbrc 664 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( invg `  G ) `  x
)  e.  ( `' O " NN ) )
8675, 85jca 532 . . 3  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  (
( invg `  G ) `  x
)  e.  ( `' O " NN ) ) )
8786ralrimiva 2802 . 2  |-  ( G  e.  Abel  ->  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) )
882, 28, 76issubg2 15699 . . 3  |-  ( G  e.  Grp  ->  (
( `' O " NN )  e.  (SubGrp `  G )  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
898, 88syl 16 . 2  |-  ( G  e.  Abel  ->  ( ( `' O " NN )  e.  (SubGrp `  G
)  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( invg `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
907, 22, 87, 89mpbir3and 1171 1  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2609   A.wral 2718    C_ wss 3331   (/)c0 3640   class class class wbr 4295   `'ccnv 4842   dom cdm 4843   "cima 4846    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094   0cc0 9285   1c1 9286    x. cmul 9290   NNcn 10325   NN0cn0 10582   ZZcz 10649    || cdivides 13538    gcd cgcd 13693   Basecbs 14177   +g cplusg 14241   0gc0g 14381   Grpcgrp 15413   invgcminusg 15414  SubGrpcsubg 15678   odcod 16031   Abelcabel 16281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-sup 7694  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-dvds 13539  df-gcd 13694  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-0g 14383  df-mnd 15418  df-grp 15548  df-minusg 15549  df-sbg 15550  df-mulg 15551  df-subg 15681  df-od 16035  df-cmn 16282  df-abl 16283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator