MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval2 Structured version   Visualization version   GIF version

Theorem pntsval2 25065
Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Distinct variable groups:   𝑖,𝑎,𝑚,𝑛,𝑦,𝐴   𝑆,𝑚,𝑛,𝑦
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pntsval.1 . . 3 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
21pntsval 25061 . 2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
3 elfznn 12241 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 vmacl 24644 . . . . . 6 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
64, 5syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
76recnd 9947 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
84nnrpd 11746 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
98relogcld 24173 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
109recnd 9947 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
11 simpl 472 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
1211, 4nndivred 10946 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ)
13 chpcl 24650 . . . . . 6 ((𝐴 / 𝑛) ∈ ℝ → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1514recnd 9947 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℂ)
167, 10, 15adddid 9943 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
1716sumeq2dv 14281 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
18 fveq2 6103 . . . . . . 7 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
19 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴 / 𝑛) = (𝐴 / 𝑚))
2019fveq2d 6107 . . . . . . 7 (𝑛 = 𝑚 → (ψ‘(𝐴 / 𝑛)) = (ψ‘(𝐴 / 𝑚)))
2118, 20oveq12d 6567 . . . . . 6 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))))
2221cbvsumv 14274 . . . . 5 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚)))
23 fzfid 12634 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑚))) ∈ Fin)
24 elfznn 12241 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
2524adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
26 vmacl 24644 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℝ)
2827recnd 9947 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℂ)
29 elfznn 12241 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚))) → 𝑘 ∈ ℕ)
3029adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℕ)
31 vmacl 24644 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℝ)
3332recnd 9947 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℂ)
3423, 28, 33fsummulc2 14358 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
35 simpl 472 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
3635, 25nndivred 10946 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ)
37 chpval 24648 . . . . . . . . . 10 ((𝐴 / 𝑚) ∈ ℝ → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3836, 37syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3938oveq2d 6565 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)))
4030nncnd 10913 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℂ)
4124ad2antlr 759 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℕ)
4241nncnd 10913 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℂ)
4341nnne0d 10942 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ≠ 0)
4440, 42, 43divcan3d 10685 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘)
4544fveq2d 6107 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘))
4645oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘)))
4746sumeq2dv 14281 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
4834, 39, 473eqtr4d 2654 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
4948sumeq2dv 14281 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
50 oveq1 6556 . . . . . . . . 9 (𝑛 = (𝑚 · 𝑘) → (𝑛 / 𝑚) = ((𝑚 · 𝑘) / 𝑚))
5150fveq2d 6107 . . . . . . . 8 (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚)))
5251oveq2d 6565 . . . . . . 7 (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
53 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
54 ssrab2 3650 . . . . . . . . . . . 12 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
55 simpr 476 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5654, 55sseldi 3566 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
5756, 26syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
58 dvdsdivcl 14876 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
594, 58sylan 487 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
6054, 59sseldi 3566 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
61 vmacl 24644 . . . . . . . . . . 11 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6260, 61syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6357, 62remulcld 9949 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
6463recnd 9947 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6564anasss 677 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6652, 53, 65dvdsflsumcom 24714 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
6749, 66eqtr4d 2647 . . . . 5 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6822, 67syl5eq 2656 . . . 4 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6968oveq2d 6565 . . 3 (𝐴 ∈ ℝ → (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
70 fzfid 12634 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
717, 10mulcld 9939 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
727, 15mulcld 9939 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) ∈ ℂ)
7370, 71, 72fsumadd 14317 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
74 fzfid 12634 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
75 dvdsssfz1 14878 . . . . . . . 8 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
764, 75syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
77 ssfi 8065 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7874, 76, 77syl2anc 691 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7978, 63fsumrecl 14312 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
8079recnd 9947 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
8170, 71, 80fsumadd 14317 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
8269, 73, 813eqtr4d 2654 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
832, 17, 823eqtrd 2648 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  ...cfz 12197  cfl 12453  Σcsu 14264  cdvds 14821  logclog 24105  Λcvma 24618  ψcchp 24619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-vma 24624  df-chp 24625
This theorem is referenced by:  pntrlog2bndlem1  25066  pntrlog2bndlem4  25069
  Copyright terms: Public domain W3C validator