MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval2 Structured version   Unicode version

Theorem pntsval2 24140
Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
Assertion
Ref Expression
pntsval2  |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
Distinct variable groups:    i, a, m, n, y, A    S, m, n, y
Allowed substitution hints:    S( i, a)

Proof of Theorem pntsval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 pntsval.1 . . 3  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
21pntsval 24136 . 2  |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  ( A  /  n ) ) ) ) )
3 elfznn 11766 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
43adantl 464 . . . . . 6  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
5 vmacl 23771 . . . . . 6  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
64, 5syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
76recnd 9651 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  CC )
84nnrpd 11301 . . . . . 6  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
98relogcld 23300 . . . . 5  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  RR )
109recnd 9651 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  CC )
11 simpl 455 . . . . . . 7  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
1211, 4nndivred 10624 . . . . . 6  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  n )  e.  RR )
13 chpcl 23777 . . . . . 6  |-  ( ( A  /  n )  e.  RR  ->  (ψ `  ( A  /  n
) )  e.  RR )
1412, 13syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (ψ `  ( A  /  n ) )  e.  RR )
1514recnd 9651 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (ψ `  ( A  /  n ) )  e.  CC )
167, 10, 15adddid 9649 . . 3  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  ( A  /  n ) ) ) )  =  ( ( (Λ `  n
)  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) ) ) )
1716sumeq2dv 13672 . 2  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  ( A  /  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( ( (Λ `  n )  x.  ( log `  n
) )  +  ( (Λ `  n )  x.  (ψ `  ( A  /  n ) ) ) ) )
18 fveq2 5848 . . . . . . 7  |-  ( n  =  m  ->  (Λ `  n )  =  (Λ `  m ) )
19 oveq2 6285 . . . . . . . 8  |-  ( n  =  m  ->  ( A  /  n )  =  ( A  /  m
) )
2019fveq2d 5852 . . . . . . 7  |-  ( n  =  m  ->  (ψ `  ( A  /  n
) )  =  (ψ `  ( A  /  m
) ) )
2118, 20oveq12d 6295 . . . . . 6  |-  ( n  =  m  ->  (
(Λ `  n )  x.  (ψ `  ( A  /  n ) ) )  =  ( (Λ `  m
)  x.  (ψ `  ( A  /  m
) ) ) )
2221cbvsumv 13665 . . . . 5  |-  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  A ) ) ( (Λ `  m )  x.  (ψ `  ( A  /  m ) ) )
23 fzfid 12122 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  m ) ) )  e.  Fin )
24 elfznn 11766 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  A
) )  ->  m  e.  NN )
2524adantl 464 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  m  e.  NN )
26 vmacl 23771 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
2725, 26syl 17 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  m )  e.  RR )
2827recnd 9651 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  m )  e.  CC )
29 elfznn 11766 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( |_ `  ( A  /  m ) ) )  ->  k  e.  NN )
3029adantl 464 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  k  e.  NN )
31 vmacl 23771 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  (Λ `  k
)  e.  RR )
3332recnd 9651 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  (Λ `  k
)  e.  CC )
3423, 28, 33fsummulc2 13748 . . . . . . . 8  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  m
)  x.  sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m ) ) ) (Λ `  k )
)  =  sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m ) ) ) ( (Λ `  m
)  x.  (Λ `  k
) ) )
35 simpl 455 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
3635, 25nndivred 10624 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  m )  e.  RR )
37 chpval 23775 . . . . . . . . . 10  |-  ( ( A  /  m )  e.  RR  ->  (ψ `  ( A  /  m
) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m
) ) ) (Λ `  k ) )
3836, 37syl 17 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  (ψ `  ( A  /  m ) )  =  sum_ k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) (Λ `  k )
)
3938oveq2d 6293 . . . . . . . 8  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  m
)  x.  (ψ `  ( A  /  m
) ) )  =  ( (Λ `  m
)  x.  sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m ) ) ) (Λ `  k )
) )
4030nncnd 10591 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  k  e.  CC )
4124ad2antlr 725 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  m  e.  NN )
4241nncnd 10591 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  m  e.  CC )
4341nnne0d 10620 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  m  =/=  0 )
4440, 42, 43divcan3d 10365 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  ( (
m  x.  k )  /  m )  =  k )
4544fveq2d 5852 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  (Λ `  (
( m  x.  k
)  /  m ) )  =  (Λ `  k
) )
4645oveq2d 6293 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) )  ->  ( (Λ `  m )  x.  (Λ `  ( ( m  x.  k )  /  m
) ) )  =  ( (Λ `  m
)  x.  (Λ `  k
) ) )
4746sumeq2dv 13672 . . . . . . . 8  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) ( (Λ `  m
)  x.  (Λ `  (
( m  x.  k
)  /  m ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m
) ) ) ( (Λ `  m )  x.  (Λ `  k )
) )
4834, 39, 473eqtr4d 2453 . . . . . . 7  |-  ( ( A  e.  RR  /\  m  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  m
)  x.  (ψ `  ( A  /  m
) ) )  = 
sum_ k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) ( (Λ `  m
)  x.  (Λ `  (
( m  x.  k
)  /  m ) ) ) )
4948sumeq2dv 13672 . . . . . 6  |-  ( A  e.  RR  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  m
)  x.  (ψ `  ( A  /  m
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  A ) ) sum_ k  e.  ( 1 ... ( |_ `  ( A  /  m
) ) ) ( (Λ `  m )  x.  (Λ `  ( (
m  x.  k )  /  m ) ) ) )
50 oveq1 6284 . . . . . . . . 9  |-  ( n  =  ( m  x.  k )  ->  (
n  /  m )  =  ( ( m  x.  k )  /  m ) )
5150fveq2d 5852 . . . . . . . 8  |-  ( n  =  ( m  x.  k )  ->  (Λ `  ( n  /  m
) )  =  (Λ `  ( ( m  x.  k )  /  m
) ) )
5251oveq2d 6293 . . . . . . 7  |-  ( n  =  ( m  x.  k )  ->  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
( m  x.  k
)  /  m ) ) ) )
53 id 22 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  RR )
54 ssrab2 3523 . . . . . . . . . . . 12  |-  { y  e.  NN  |  y 
||  n }  C_  NN
55 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  { y  e.  NN  | 
y  ||  n }
)
5654, 55sseldi 3439 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  NN )
5756, 26syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  m
)  e.  RR )
58 dvdsdivcl 23836 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  m )  e.  { y  e.  NN  |  y  ||  n } )
594, 58sylan 469 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  {
y  e.  NN  | 
y  ||  n }
)
6054, 59sseldi 3439 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  NN )
61 vmacl 23771 . . . . . . . . . . 11  |-  ( ( n  /  m )  e.  NN  ->  (Λ `  ( n  /  m
) )  e.  RR )
6260, 61syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  m ) )  e.  RR )
6357, 62remulcld 9653 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  e.  RR )
6463recnd 9651 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  e.  CC )
6564anasss 645 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  m  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  CC )
6652, 53, 65dvdsflsumcom 23843 . . . . . 6  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  A ) )
sum_ k  e.  ( 1 ... ( |_
`  ( A  /  m ) ) ) ( (Λ `  m
)  x.  (Λ `  (
( m  x.  k
)  /  m ) ) ) )
6749, 66eqtr4d 2446 . . . . 5  |-  ( A  e.  RR  ->  sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  m
)  x.  (ψ `  ( A  /  m
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )
6822, 67syl5eq 2455 . . . 4  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )
6968oveq2d 6293 . . 3  |-  ( A  e.  RR  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( (Λ `  n )  x.  (ψ `  ( A  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) )
70 fzfid 12122 . . . 4  |-  ( A  e.  RR  ->  (
1 ... ( |_ `  A ) )  e. 
Fin )
717, 10mulcld 9645 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  x.  ( log `  n ) )  e.  CC )
727, 15mulcld 9645 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) )  e.  CC )
7370, 71, 72fsumadd 13708 . . 3  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( (Λ `  n )  x.  (ψ `  ( A  /  n ) ) ) ) )
74 fzfid 12122 . . . . . . 7  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e.  Fin )
75 sgmss 23759 . . . . . . . 8  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
764, 75syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
77 ssfi 7774 . . . . . . 7  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
7874, 76, 77syl2anc 659 . . . . . 6  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
7978, 63fsumrecl 13703 . . . . 5  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  RR )
8079recnd 9651 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  CC )
8170, 71, 80fsumadd 13708 . . 3  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ n  e.  ( 1 ... ( |_
`  A ) )
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
8269, 73, 813eqtr4d 2453 . 2  |-  ( A  e.  RR  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  +  ( (Λ `  n
)  x.  (ψ `  ( A  /  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
832, 17, 823eqtrd 2447 1  |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( (Λ `  n
)  x.  ( log `  n ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2757    C_ wss 3413   class class class wbr 4394    |-> cmpt 4452   ` cfv 5568  (class class class)co 6277   Fincfn 7553   CCcc 9519   RRcr 9520   1c1 9522    + caddc 9524    x. cmul 9526    / cdiv 10246   NNcn 10575   ...cfz 11724   |_cfl 11962   sum_csu 13655    || cdvds 14193   logclog 23232  Λcvma 23744  ψcchp 23745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-pm 7459  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-fi 7904  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-q 11227  df-rp 11265  df-xneg 11370  df-xadd 11371  df-xmul 11372  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-shft 13047  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-limsup 13441  df-clim 13458  df-rlim 13459  df-sum 13656  df-ef 14010  df-sin 14012  df-cos 14013  df-pi 14015  df-dvds 14194  df-gcd 14352  df-prm 14425  df-pc 14568  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-starv 14922  df-sca 14923  df-vsca 14924  df-ip 14925  df-tset 14926  df-ple 14927  df-ds 14929  df-unif 14930  df-hom 14931  df-cco 14932  df-rest 15035  df-topn 15036  df-0g 15054  df-gsum 15055  df-topgen 15056  df-pt 15057  df-prds 15060  df-xrs 15114  df-qtop 15119  df-imas 15120  df-xps 15122  df-mre 15198  df-mrc 15199  df-acs 15201  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-mulg 16382  df-cntz 16677  df-cmn 17122  df-psmet 18729  df-xmet 18730  df-met 18731  df-bl 18732  df-mopn 18733  df-fbas 18734  df-fg 18735  df-cnfld 18739  df-top 19689  df-bases 19691  df-topon 19692  df-topsp 19693  df-cld 19810  df-ntr 19811  df-cls 19812  df-nei 19890  df-lp 19928  df-perf 19929  df-cn 20019  df-cnp 20020  df-haus 20107  df-tx 20353  df-hmeo 20546  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-xms 21113  df-ms 21114  df-tms 21115  df-cncf 21672  df-limc 22560  df-dv 22561  df-log 23234  df-vma 23750  df-chp 23751
This theorem is referenced by:  pntrlog2bndlem1  24141  pntrlog2bndlem4  24144
  Copyright terms: Public domain W3C validator