Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval Structured version   Visualization version   GIF version

Theorem pntsval 25061
 Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg 25037. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
Distinct variable groups:   𝑖,𝑎,𝑛,𝐴   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑖 = 𝑛 → (Λ‘𝑖) = (Λ‘𝑛))
2 fveq2 6103 . . . . . 6 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
3 oveq2 6557 . . . . . . 7 (𝑖 = 𝑛 → (𝑎 / 𝑖) = (𝑎 / 𝑛))
43fveq2d 6107 . . . . . 6 (𝑖 = 𝑛 → (ψ‘(𝑎 / 𝑖)) = (ψ‘(𝑎 / 𝑛)))
52, 4oveq12d 6567 . . . . 5 (𝑖 = 𝑛 → ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))) = ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))))
61, 5oveq12d 6567 . . . 4 (𝑖 = 𝑛 → ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))))
76cbvsumv 14274 . . 3 Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))))
8 fveq2 6103 . . . . 5 (𝑎 = 𝐴 → (⌊‘𝑎) = (⌊‘𝐴))
98oveq2d 6565 . . . 4 (𝑎 = 𝐴 → (1...(⌊‘𝑎)) = (1...(⌊‘𝐴)))
10 oveq1 6556 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛))
1110fveq2d 6107 . . . . . . 7 (𝑎 = 𝐴 → (ψ‘(𝑎 / 𝑛)) = (ψ‘(𝐴 / 𝑛)))
1211oveq2d 6565 . . . . . 6 (𝑎 = 𝐴 → ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))) = ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))
1312oveq2d 6565 . . . . 5 (𝑎 = 𝐴 → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
1413adantr 480 . . . 4 ((𝑎 = 𝐴𝑛 ∈ (1...(⌊‘𝑎))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
159, 14sumeq12dv 14284 . . 3 (𝑎 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
167, 15syl5eq 2656 . 2 (𝑎 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
17 pntsval.1 . 2 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
18 sumex 14266 . 2 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) ∈ V
1916, 17, 18fvmpt 6191 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  ...cfz 12197  ⌊cfl 12453  Σcsu 14264  logclog 24105  Λcvma 24618  ψcchp 24619 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265 This theorem is referenced by:  selbergs  25063  selbergsb  25064  pntsval2  25065
 Copyright terms: Public domain W3C validator