MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Structured version   Visualization version   GIF version

Theorem o1cxp 24501
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1 (𝜑𝐶 ∈ ℂ)
o1cxp.2 (𝜑 → 0 ≤ (ℜ‘𝐶))
o1cxp.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1cxp.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1cxp (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1cxp
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1cxp.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 14108 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1cxp.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 5549 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 5944 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 221 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 o1bdd 14110 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
111, 9, 10syl2anc 691 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
12 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1512, 4, 14syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615oveq1d 6564 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (𝐵𝑐𝐶))
17 ovex 6577 . . . . . . . . . . . . . . 15 (𝐵𝑐𝐶) ∈ V
18 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐵𝑐𝐶)) = (𝑥𝐴 ↦ (𝐵𝑐𝐶))
1918fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ (𝐵𝑐𝐶) ∈ V) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2012, 17, 19sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2116, 20eqtr4d 2647 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
2221ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
23 nfv 1830 . . . . . . . . . . . . 13 𝑧(((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥)
24 nffvmpt1 6111 . . . . . . . . . . . . . . 15 𝑥((𝑥𝐴𝐵)‘𝑧)
25 nfcv 2751 . . . . . . . . . . . . . . 15 𝑥𝑐
26 nfcv 2751 . . . . . . . . . . . . . . 15 𝑥𝐶
2724, 25, 26nfov 6575 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)
28 nffvmpt1 6111 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
2927, 28nfeq 2762 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
30 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
3130oveq1d 6564 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶))
32 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3331, 32eqeq12d 2625 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
3423, 29, 33cbvral 3143 . . . . . . . . . . . 12 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3522, 34sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3635r19.21bi 2916 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3736ad2ant2r 779 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3837fveq2d 6107 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
399ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
4039ad2ant2r 779 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
41 o1cxp.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
4241ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ)
43 o1cxp.2 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐶))
4443ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶))
45 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ)
46 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
47 ifcl 4080 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4845, 46, 47sylancl 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4948adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
5040abscld 14023 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ∈ ℝ)
5145adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ)
52 simprr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)
53 max2 11892 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5446, 45, 53sylancr 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5554adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5650, 51, 49, 52, 55letrd 10073 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0))
5740, 42, 44, 49, 56abscxpbnd 24294 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5838, 57eqbrtrrd 4607 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5958expr 641 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))))
6059imim2d 55 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
6160ralimdva 2945 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
624, 1o1mptrcl 14201 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6341adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
6462, 63cxpcld 24254 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
6564, 18fmptd 6292 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
6665adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
67 o1dm 14109 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
681, 67syl 17 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
697, 68eqsstr3d 3603 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
7069adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ)
71 simprl 790 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ)
72 max1 11890 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7346, 45, 72sylancr 694 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7441adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ)
7574recld 13782 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈ ℝ)
7648, 73, 75recxpcld 24269 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) ∈ ℝ)
7774abscld 14023 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈ ℝ)
78 pire 24014 . . . . . . . 8 π ∈ ℝ
79 remulcl 9900 . . . . . . . 8 (((abs‘𝐶) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈ ℝ)
8077, 78, 79sylancl 693 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈ ℝ)
8180reefcld 14657 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (exp‘((abs‘𝐶) · π)) ∈ ℝ)
8276, 81remulcld 9949 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)
83 elo12r 14107 . . . . . 6 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ) ∧ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
84833expia 1259 . . . . 5 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8566, 70, 71, 82, 84syl22anc 1319 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8661, 85syld 46 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8786rexlimdvva 3020 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8811, 87mpd 15 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820  cle 9954  cre 13685  abscabs 13822  𝑂(1)co1 14065  expce 14631  πcpi 14636  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator