MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sub Structured version   Visualization version   GIF version

Theorem nn0sub 11220
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0sub ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))

Proof of Theorem nn0sub
StepHypRef Expression
1 nn0re 11178 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2 nn0re 11178 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 leloe 10003 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
41, 2, 3syl2an 493 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
5 elnn0 11171 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 elnn0 11171 . . . . . . . 8 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7 nnsub 10936 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
87ex 449 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
9 nngt0 10926 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 𝑁)
10 nncn 10905 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1110subid1d 10260 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
12 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1311, 12eqeltrd 2688 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 0) ∈ ℕ)
149, 132thd 254 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ))
15 breq1 4586 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁))
16 oveq2 6557 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑁𝑀) = (𝑁 − 0))
1716eleq1d 2672 . . . . . . . . . . 11 (𝑀 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈ ℕ))
1815, 17bibi12d 334 . . . . . . . . . 10 (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ)))
1914, 18syl5ibr 235 . . . . . . . . 9 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
208, 19jaoi 393 . . . . . . . 8 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
216, 20sylbi 206 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
22 nn0nlt0 11196 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ¬ 𝑀 < 0)
2322pm2.21d 117 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑀 < 0 → (0 − 𝑀) ∈ ℕ))
24 nngt0 10926 . . . . . . . . . 10 ((0 − 𝑀) ∈ ℕ → 0 < (0 − 𝑀))
25 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
26 posdif 10400 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
271, 25, 26sylancl 693 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
2824, 27syl5ibr 235 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((0 − 𝑀) ∈ ℕ → 𝑀 < 0))
2923, 28impbid 201 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))
30 breq2 4587 . . . . . . . . 9 (𝑁 = 0 → (𝑀 < 𝑁𝑀 < 0))
31 oveq1 6556 . . . . . . . . . 10 (𝑁 = 0 → (𝑁𝑀) = (0 − 𝑀))
3231eleq1d 2672 . . . . . . . . 9 (𝑁 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈ ℕ))
3330, 32bibi12d 334 . . . . . . . 8 (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ)))
3429, 33syl5ibrcom 236 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3521, 34jaod 394 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
365, 35syl5bi 231 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3736imp 444 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
38 nn0cn 11179 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 nn0cn 11179 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
40 subeq0 10186 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
4138, 39, 40syl2anr 494 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
42 eqcom 2617 . . . . 5 (𝑁 = 𝑀𝑀 = 𝑁)
4341, 42syl6rbb 276 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑁𝑀) = 0))
4437, 43orbi12d 742 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 < 𝑁𝑀 = 𝑁) ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
454, 44bitrd 267 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
46 elnn0 11171 . 2 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0))
4745, 46syl6bbr 277 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170
This theorem is referenced by:  ltsubnn0  11221  nn0n0n1ge2  11235  elz2  11271  nn0sub2  11315  fz0fzdiffz0  12317  ubmelfzo  12400  repswcshw  13409  swrd2lsw  13543  2swrd2eqwrdeq  13544  psrbagcon  19192  coe1tmmul2  19467  aaliou3lem6  23907  basellem5  24611  omndmul3  29044  jm2.27c  36592  binomcxplemnn0  37570  dvnxpaek  38832  fmtnoprmfac2lem1  40016  subsubelfzo0  40359  crctcsh1wlkn0lem5  41017  eucrctshift  41411  digexp  42199
  Copyright terms: Public domain W3C validator