Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27c Structured version   Visualization version   GIF version

Theorem jm2.27c 36592
 Description: Lemma for jm2.27 36593. Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1 (𝜑𝐴 ∈ (ℤ‘2))
jm2.27a2 (𝜑𝐵 ∈ ℕ)
jm2.27a3 (𝜑𝐶 ∈ ℕ)
jm2.27c4 (𝜑𝐶 = (𝐴 Yrm 𝐵))
jm2.27c5 𝐷 = (𝐴 Xrm 𝐵)
jm2.27c6 𝑄 = (𝐵 · (𝐴 Yrm 𝐵))
jm2.27c7 𝐸 = (𝐴 Yrm (2 · 𝑄))
jm2.27c8 𝐹 = (𝐴 Xrm (2 · 𝑄))
jm2.27c9 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴)))
jm2.27c10 𝐻 = (𝐺 Yrm 𝐵)
jm2.27c11 𝐼 = (𝐺 Xrm 𝐵)
jm2.27c12 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1)
Assertion
Ref Expression
jm2.27c (𝜑 → (((𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0𝐻 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶))))))

Proof of Theorem jm2.27c
StepHypRef Expression
1 jm2.27c5 . . . 4 𝐷 = (𝐴 Xrm 𝐵)
2 jm2.27a1 . . . . 5 (𝜑𝐴 ∈ (ℤ‘2))
3 jm2.27a2 . . . . . 6 (𝜑𝐵 ∈ ℕ)
43nnzd 11357 . . . . 5 (𝜑𝐵 ∈ ℤ)
5 frmx 36496 . . . . . 6 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
65fovcl 6663 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (𝐴 Xrm 𝐵) ∈ ℕ0)
72, 4, 6syl2anc 691 . . . 4 (𝜑 → (𝐴 Xrm 𝐵) ∈ ℕ0)
81, 7syl5eqel 2692 . . 3 (𝜑𝐷 ∈ ℕ0)
9 jm2.27c7 . . . 4 𝐸 = (𝐴 Yrm (2 · 𝑄))
10 2z 11286 . . . . . . 7 2 ∈ ℤ
11 jm2.27c6 . . . . . . . 8 𝑄 = (𝐵 · (𝐴 Yrm 𝐵))
12 jm2.27c4 . . . . . . . . . 10 (𝜑𝐶 = (𝐴 Yrm 𝐵))
13 jm2.27a3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℕ)
1413nnzd 11357 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
1512, 14eqeltrrd 2689 . . . . . . . . 9 (𝜑 → (𝐴 Yrm 𝐵) ∈ ℤ)
164, 15zmulcld 11364 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴 Yrm 𝐵)) ∈ ℤ)
1711, 16syl5eqel 2692 . . . . . . 7 (𝜑𝑄 ∈ ℤ)
18 zmulcl 11303 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (2 · 𝑄) ∈ ℤ)
1910, 17, 18sylancr 694 . . . . . 6 (𝜑 → (2 · 𝑄) ∈ ℤ)
20 frmy 36497 . . . . . . 7 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2120fovcl 6663 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑄) ∈ ℤ) → (𝐴 Yrm (2 · 𝑄)) ∈ ℤ)
222, 19, 21syl2anc 691 . . . . 5 (𝜑 → (𝐴 Yrm (2 · 𝑄)) ∈ ℤ)
23 rmy0 36512 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
242, 23syl 17 . . . . . 6 (𝜑 → (𝐴 Yrm 0) = 0)
25 2nn 11062 . . . . . . . . . 10 2 ∈ ℕ
2612, 13eqeltrrd 2689 . . . . . . . . . . . 12 (𝜑 → (𝐴 Yrm 𝐵) ∈ ℕ)
273, 26nnmulcld 10945 . . . . . . . . . . 11 (𝜑 → (𝐵 · (𝐴 Yrm 𝐵)) ∈ ℕ)
2811, 27syl5eqel 2692 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
29 nnmulcl 10920 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (2 · 𝑄) ∈ ℕ)
3025, 28, 29sylancr 694 . . . . . . . . 9 (𝜑 → (2 · 𝑄) ∈ ℕ)
3130nnnn0d 11228 . . . . . . . 8 (𝜑 → (2 · 𝑄) ∈ ℕ0)
3231nn0ge0d 11231 . . . . . . 7 (𝜑 → 0 ≤ (2 · 𝑄))
33 0zd 11266 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
34 lermy 36540 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (2 · 𝑄) ∈ ℤ) → (0 ≤ (2 · 𝑄) ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm (2 · 𝑄))))
352, 33, 19, 34syl3anc 1318 . . . . . . 7 (𝜑 → (0 ≤ (2 · 𝑄) ↔ (𝐴 Yrm 0) ≤ (𝐴 Yrm (2 · 𝑄))))
3632, 35mpbid 221 . . . . . 6 (𝜑 → (𝐴 Yrm 0) ≤ (𝐴 Yrm (2 · 𝑄)))
3724, 36eqbrtrrd 4607 . . . . 5 (𝜑 → 0 ≤ (𝐴 Yrm (2 · 𝑄)))
38 elnn0z 11267 . . . . 5 ((𝐴 Yrm (2 · 𝑄)) ∈ ℕ0 ↔ ((𝐴 Yrm (2 · 𝑄)) ∈ ℤ ∧ 0 ≤ (𝐴 Yrm (2 · 𝑄))))
3922, 37, 38sylanbrc 695 . . . 4 (𝜑 → (𝐴 Yrm (2 · 𝑄)) ∈ ℕ0)
409, 39syl5eqel 2692 . . 3 (𝜑𝐸 ∈ ℕ0)
41 jm2.27c8 . . . 4 𝐹 = (𝐴 Xrm (2 · 𝑄))
425fovcl 6663 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑄) ∈ ℤ) → (𝐴 Xrm (2 · 𝑄)) ∈ ℕ0)
432, 19, 42syl2anc 691 . . . 4 (𝜑 → (𝐴 Xrm (2 · 𝑄)) ∈ ℕ0)
4441, 43syl5eqel 2692 . . 3 (𝜑𝐹 ∈ ℕ0)
458, 40, 443jca 1235 . 2 (𝜑 → (𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝐹 ∈ ℕ0))
46 2nn0 11186 . . . 4 2 ∈ ℕ0
47 jm2.27c9 . . . . 5 𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴)))
4844nn0cnd 11230 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
4948sqvald 12867 . . . . . . . 8 (𝜑 → (𝐹↑2) = (𝐹 · 𝐹))
5044, 44nn0mulcld 11233 . . . . . . . 8 (𝜑 → (𝐹 · 𝐹) ∈ ℕ0)
5149, 50eqeltrd 2688 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℕ0)
52 eluz2nn 11602 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
532, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℕ)
5453nnnn0d 11228 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℕ0)
5554nn0red 11229 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
5644nn0red 11229 . . . . . . . . . 10 (𝜑𝐹 ∈ ℝ)
5756, 56remulcld 9949 . . . . . . . . . 10 (𝜑 → (𝐹 · 𝐹) ∈ ℝ)
58 rmx1 36509 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) = 𝐴)
592, 58syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 Xrm 1) = 𝐴)
6030nnge1d 10940 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (2 · 𝑄))
61 1nn0 11185 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℕ0)
63 lermxnn0 36535 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℕ0 ∧ (2 · 𝑄) ∈ ℕ0) → (1 ≤ (2 · 𝑄) ↔ (𝐴 Xrm 1) ≤ (𝐴 Xrm (2 · 𝑄))))
642, 62, 31, 63syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (1 ≤ (2 · 𝑄) ↔ (𝐴 Xrm 1) ≤ (𝐴 Xrm (2 · 𝑄))))
6560, 64mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝐴 Xrm 1) ≤ (𝐴 Xrm (2 · 𝑄)))
6659, 65eqbrtrrd 4607 . . . . . . . . . . 11 (𝜑𝐴 ≤ (𝐴 Xrm (2 · 𝑄)))
6766, 41syl6breqr 4625 . . . . . . . . . 10 (𝜑𝐴𝐹)
6844nn0ge0d 11231 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐹)
69 rmxnn 36536 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑄) ∈ ℤ) → (𝐴 Xrm (2 · 𝑄)) ∈ ℕ)
702, 19, 69syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Xrm (2 · 𝑄)) ∈ ℕ)
7141, 70syl5eqel 2692 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℕ)
7271nnge1d 10940 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝐹)
7356, 56, 68, 72lemulge12d 10841 . . . . . . . . . 10 (𝜑𝐹 ≤ (𝐹 · 𝐹))
7455, 56, 57, 67, 73letrd 10073 . . . . . . . . 9 (𝜑𝐴 ≤ (𝐹 · 𝐹))
7574, 49breqtrrd 4611 . . . . . . . 8 (𝜑𝐴 ≤ (𝐹↑2))
76 nn0sub 11220 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝐹↑2) ∈ ℕ0) → (𝐴 ≤ (𝐹↑2) ↔ ((𝐹↑2) − 𝐴) ∈ ℕ0))
7754, 51, 76syl2anc 691 . . . . . . . 8 (𝜑 → (𝐴 ≤ (𝐹↑2) ↔ ((𝐹↑2) − 𝐴) ∈ ℕ0))
7875, 77mpbid 221 . . . . . . 7 (𝜑 → ((𝐹↑2) − 𝐴) ∈ ℕ0)
7951, 78nn0mulcld 11233 . . . . . 6 (𝜑 → ((𝐹↑2) · ((𝐹↑2) − 𝐴)) ∈ ℕ0)
80 uzaddcl 11620 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐹↑2) · ((𝐹↑2) − 𝐴)) ∈ ℕ0) → (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) ∈ (ℤ‘2))
812, 79, 80syl2anc 691 . . . . 5 (𝜑 → (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) ∈ (ℤ‘2))
8247, 81syl5eqel 2692 . . . 4 (𝜑𝐺 ∈ (ℤ‘2))
83 eluznn0 11633 . . . 4 ((2 ∈ ℕ0𝐺 ∈ (ℤ‘2)) → 𝐺 ∈ ℕ0)
8446, 82, 83sylancr 694 . . 3 (𝜑𝐺 ∈ ℕ0)
85 jm2.27c10 . . . 4 𝐻 = (𝐺 Yrm 𝐵)
8620fovcl 6663 . . . . . 6 ((𝐺 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (𝐺 Yrm 𝐵) ∈ ℤ)
8782, 4, 86syl2anc 691 . . . . 5 (𝜑 → (𝐺 Yrm 𝐵) ∈ ℤ)
88 rmy0 36512 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → (𝐺 Yrm 0) = 0)
8982, 88syl 17 . . . . . 6 (𝜑 → (𝐺 Yrm 0) = 0)
903nnnn0d 11228 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
9190nn0ge0d 11231 . . . . . . 7 (𝜑 → 0 ≤ 𝐵)
92 lermy 36540 . . . . . . . 8 ((𝐺 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐵 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝐵)))
9382, 33, 4, 92syl3anc 1318 . . . . . . 7 (𝜑 → (0 ≤ 𝐵 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝐵)))
9491, 93mpbid 221 . . . . . 6 (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝐵))
9589, 94eqbrtrrd 4607 . . . . 5 (𝜑 → 0 ≤ (𝐺 Yrm 𝐵))
96 elnn0z 11267 . . . . 5 ((𝐺 Yrm 𝐵) ∈ ℕ0 ↔ ((𝐺 Yrm 𝐵) ∈ ℤ ∧ 0 ≤ (𝐺 Yrm 𝐵)))
9787, 95, 96sylanbrc 695 . . . 4 (𝜑 → (𝐺 Yrm 𝐵) ∈ ℕ0)
9885, 97syl5eqel 2692 . . 3 (𝜑𝐻 ∈ ℕ0)
99 jm2.27c11 . . . 4 𝐼 = (𝐺 Xrm 𝐵)
1005fovcl 6663 . . . . 5 ((𝐺 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (𝐺 Xrm 𝐵) ∈ ℕ0)
10182, 4, 100syl2anc 691 . . . 4 (𝜑 → (𝐺 Xrm 𝐵) ∈ ℕ0)
10299, 101syl5eqel 2692 . . 3 (𝜑𝐼 ∈ ℕ0)
10384, 98, 1023jca 1235 . 2 (𝜑 → (𝐺 ∈ ℕ0𝐻 ∈ ℕ0𝐼 ∈ ℕ0))
104 jm2.27c12 . . . 4 𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1)
105 iddvds 14833 . . . . . . . . . . . 12 ((𝐵 · (𝐴 Yrm 𝐵)) ∈ ℤ → (𝐵 · (𝐴 Yrm 𝐵)) ∥ (𝐵 · (𝐴 Yrm 𝐵)))
10616, 105syl 17 . . . . . . . . . . 11 (𝜑 → (𝐵 · (𝐴 Yrm 𝐵)) ∥ (𝐵 · (𝐴 Yrm 𝐵)))
107106, 11syl6breqr 4625 . . . . . . . . . 10 (𝜑 → (𝐵 · (𝐴 Yrm 𝐵)) ∥ 𝑄)
108 jm2.20nn 36582 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm 𝐵)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝐵 · (𝐴 Yrm 𝐵)) ∥ 𝑄))
1092, 28, 3, 108syl3anc 1318 . . . . . . . . . 10 (𝜑 → (((𝐴 Yrm 𝐵)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝐵 · (𝐴 Yrm 𝐵)) ∥ 𝑄))
110107, 109mpbird 246 . . . . . . . . 9 (𝜑 → ((𝐴 Yrm 𝐵)↑2) ∥ (𝐴 Yrm 𝑄))
111 zsqcl 12796 . . . . . . . . . . 11 ((𝐴 Yrm 𝐵) ∈ ℤ → ((𝐴 Yrm 𝐵)↑2) ∈ ℤ)
11215, 111syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝐵)↑2) ∈ ℤ)
11320fovcl 6663 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℤ) → (𝐴 Yrm 𝑄) ∈ ℤ)
1142, 17, 113syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐴 Yrm 𝑄) ∈ ℤ)
11510a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℤ)
116 dvdscmul 14846 . . . . . . . . . 10 ((((𝐴 Yrm 𝐵)↑2) ∈ ℤ ∧ (𝐴 Yrm 𝑄) ∈ ℤ ∧ 2 ∈ ℤ) → (((𝐴 Yrm 𝐵)↑2) ∥ (𝐴 Yrm 𝑄) → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (2 · (𝐴 Yrm 𝑄))))
117112, 114, 115, 116syl3anc 1318 . . . . . . . . 9 (𝜑 → (((𝐴 Yrm 𝐵)↑2) ∥ (𝐴 Yrm 𝑄) → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (2 · (𝐴 Yrm 𝑄))))
118110, 117mpd 15 . . . . . . . 8 (𝜑 → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (2 · (𝐴 Yrm 𝑄)))
119 zmulcl 11303 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝐴 Yrm 𝑄) ∈ ℤ) → (2 · (𝐴 Yrm 𝑄)) ∈ ℤ)
12010, 114, 119sylancr 694 . . . . . . . . . 10 (𝜑 → (2 · (𝐴 Yrm 𝑄)) ∈ ℤ)
1215fovcl 6663 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℤ) → (𝐴 Xrm 𝑄) ∈ ℕ0)
1222, 17, 121syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℕ0)
123122nn0zd 11356 . . . . . . . . . 10 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ)
124 dvdsmul1 14841 . . . . . . . . . 10 (((2 · (𝐴 Yrm 𝑄)) ∈ ℤ ∧ (𝐴 Xrm 𝑄) ∈ ℤ) → (2 · (𝐴 Yrm 𝑄)) ∥ ((2 · (𝐴 Yrm 𝑄)) · (𝐴 Xrm 𝑄)))
125120, 123, 124syl2anc 691 . . . . . . . . 9 (𝜑 → (2 · (𝐴 Yrm 𝑄)) ∥ ((2 · (𝐴 Yrm 𝑄)) · (𝐴 Xrm 𝑄)))
126 rmydbl 36523 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℤ) → (𝐴 Yrm (2 · 𝑄)) = ((2 · (𝐴 Xrm 𝑄)) · (𝐴 Yrm 𝑄)))
1272, 17, 126syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐴 Yrm (2 · 𝑄)) = ((2 · (𝐴 Xrm 𝑄)) · (𝐴 Yrm 𝑄)))
128 2cnd 10970 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
129122nn0cnd 11230 . . . . . . . . . . 11 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℂ)
130114zcnd 11359 . . . . . . . . . . 11 (𝜑 → (𝐴 Yrm 𝑄) ∈ ℂ)
131128, 129, 130mul32d 10125 . . . . . . . . . 10 (𝜑 → ((2 · (𝐴 Xrm 𝑄)) · (𝐴 Yrm 𝑄)) = ((2 · (𝐴 Yrm 𝑄)) · (𝐴 Xrm 𝑄)))
132127, 131eqtrd 2644 . . . . . . . . 9 (𝜑 → (𝐴 Yrm (2 · 𝑄)) = ((2 · (𝐴 Yrm 𝑄)) · (𝐴 Xrm 𝑄)))
133125, 132breqtrrd 4611 . . . . . . . 8 (𝜑 → (2 · (𝐴 Yrm 𝑄)) ∥ (𝐴 Yrm (2 · 𝑄)))
134 zmulcl 11303 . . . . . . . . . 10 ((2 ∈ ℤ ∧ ((𝐴 Yrm 𝐵)↑2) ∈ ℤ) → (2 · ((𝐴 Yrm 𝐵)↑2)) ∈ ℤ)
13510, 112, 134sylancr 694 . . . . . . . . 9 (𝜑 → (2 · ((𝐴 Yrm 𝐵)↑2)) ∈ ℤ)
136 dvdstr 14856 . . . . . . . . 9 (((2 · ((𝐴 Yrm 𝐵)↑2)) ∈ ℤ ∧ (2 · (𝐴 Yrm 𝑄)) ∈ ℤ ∧ (𝐴 Yrm (2 · 𝑄)) ∈ ℤ) → (((2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (2 · (𝐴 Yrm 𝑄)) ∧ (2 · (𝐴 Yrm 𝑄)) ∥ (𝐴 Yrm (2 · 𝑄))) → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (𝐴 Yrm (2 · 𝑄))))
137135, 120, 22, 136syl3anc 1318 . . . . . . . 8 (𝜑 → (((2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (2 · (𝐴 Yrm 𝑄)) ∧ (2 · (𝐴 Yrm 𝑄)) ∥ (𝐴 Yrm (2 · 𝑄))) → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (𝐴 Yrm (2 · 𝑄))))
138118, 133, 137mp2and 711 . . . . . . 7 (𝜑 → (2 · ((𝐴 Yrm 𝐵)↑2)) ∥ (𝐴 Yrm (2 · 𝑄)))
13912oveq1d 6564 . . . . . . . 8 (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝐵)↑2))
140139oveq2d 6565 . . . . . . 7 (𝜑 → (2 · (𝐶↑2)) = (2 · ((𝐴 Yrm 𝐵)↑2)))
1419a1i 11 . . . . . . 7 (𝜑𝐸 = (𝐴 Yrm (2 · 𝑄)))
142138, 140, 1413brtr4d 4615 . . . . . 6 (𝜑 → (2 · (𝐶↑2)) ∥ 𝐸)
1439, 22syl5eqel 2692 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
14430nngt0d 10941 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑄))
145 ltrmy 36537 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (2 · 𝑄) ∈ ℤ) → (0 < (2 · 𝑄) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (2 · 𝑄))))
1462, 33, 19, 145syl3anc 1318 . . . . . . . . . 10 (𝜑 → (0 < (2 · 𝑄) ↔ (𝐴 Yrm 0) < (𝐴 Yrm (2 · 𝑄))))
147144, 146mpbid 221 . . . . . . . . 9 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm (2 · 𝑄)))
14824eqcomd 2616 . . . . . . . . 9 (𝜑 → 0 = (𝐴 Yrm 0))
149147, 148, 1413brtr4d 4615 . . . . . . . 8 (𝜑 → 0 < 𝐸)
150 elnnz 11264 . . . . . . . 8 (𝐸 ∈ ℕ ↔ (𝐸 ∈ ℤ ∧ 0 < 𝐸))
151143, 149, 150sylanbrc 695 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
15213nnsqcld 12891 . . . . . . . 8 (𝜑 → (𝐶↑2) ∈ ℕ)
153 nnmulcl 10920 . . . . . . . 8 ((2 ∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 · (𝐶↑2)) ∈ ℕ)
15425, 152, 153sylancr 694 . . . . . . 7 (𝜑 → (2 · (𝐶↑2)) ∈ ℕ)
155 nndivdvds 14827 . . . . . . 7 ((𝐸 ∈ ℕ ∧ (2 · (𝐶↑2)) ∈ ℕ) → ((2 · (𝐶↑2)) ∥ 𝐸 ↔ (𝐸 / (2 · (𝐶↑2))) ∈ ℕ))
156151, 154, 155syl2anc 691 . . . . . 6 (𝜑 → ((2 · (𝐶↑2)) ∥ 𝐸 ↔ (𝐸 / (2 · (𝐶↑2))) ∈ ℕ))
157142, 156mpbid 221 . . . . 5 (𝜑 → (𝐸 / (2 · (𝐶↑2))) ∈ ℕ)
158 nnm1nn0 11211 . . . . 5 ((𝐸 / (2 · (𝐶↑2))) ∈ ℕ → ((𝐸 / (2 · (𝐶↑2))) − 1) ∈ ℕ0)
159157, 158syl 17 . . . 4 (𝜑 → ((𝐸 / (2 · (𝐶↑2))) − 1) ∈ ℕ0)
160104, 159syl5eqel 2692 . . 3 (𝜑𝐽 ∈ ℕ0)
1611oveq1i 6559 . . . . . . . 8 (𝐷↑2) = ((𝐴 Xrm 𝐵)↑2)
162161a1i 11 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐴 Xrm 𝐵)↑2))
163139oveq2d 6565 . . . . . . 7 (𝜑 → (((𝐴↑2) − 1) · (𝐶↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝐵)↑2)))
164162, 163oveq12d 6567 . . . . . 6 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝐵)↑2))))
165 rmxynorm 36501 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝐵)↑2))) = 1)
1662, 4, 165syl2anc 691 . . . . . 6 (𝜑 → (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝐵)↑2))) = 1)
167164, 166eqtrd 2644 . . . . 5 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
16841oveq1i 6559 . . . . . . 7 (𝐹↑2) = ((𝐴 Xrm (2 · 𝑄))↑2)
1699oveq1i 6559 . . . . . . . 8 (𝐸↑2) = ((𝐴 Yrm (2 · 𝑄))↑2)
170169oveq2i 6560 . . . . . . 7 (((𝐴↑2) − 1) · (𝐸↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · 𝑄))↑2))
171168, 170oveq12i 6561 . . . . . 6 ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = (((𝐴 Xrm (2 · 𝑄))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · 𝑄))↑2)))
172 rmxynorm 36501 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑄) ∈ ℤ) → (((𝐴 Xrm (2 · 𝑄))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · 𝑄))↑2))) = 1)
1732, 19, 172syl2anc 691 . . . . . 6 (𝜑 → (((𝐴 Xrm (2 · 𝑄))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · 𝑄))↑2))) = 1)
174171, 173syl5eq 2656 . . . . 5 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
175167, 174, 823jca 1235 . . . 4 (𝜑 → (((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ‘2)))
17699oveq1i 6559 . . . . . . 7 (𝐼↑2) = ((𝐺 Xrm 𝐵)↑2)
17785oveq1i 6559 . . . . . . . 8 (𝐻↑2) = ((𝐺 Yrm 𝐵)↑2)
178177oveq2i 6560 . . . . . . 7 (((𝐺↑2) − 1) · (𝐻↑2)) = (((𝐺↑2) − 1) · ((𝐺 Yrm 𝐵)↑2))
179176, 178oveq12i 6561 . . . . . 6 ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = (((𝐺 Xrm 𝐵)↑2) − (((𝐺↑2) − 1) · ((𝐺 Yrm 𝐵)↑2)))
180 rmxynorm 36501 . . . . . . 7 ((𝐺 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → (((𝐺 Xrm 𝐵)↑2) − (((𝐺↑2) − 1) · ((𝐺 Yrm 𝐵)↑2))) = 1)
18182, 4, 180syl2anc 691 . . . . . 6 (𝜑 → (((𝐺 Xrm 𝐵)↑2) − (((𝐺↑2) − 1) · ((𝐺 Yrm 𝐵)↑2))) = 1)
182179, 181syl5eq 2656 . . . . 5 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
183104a1i 11 . . . . . . . . 9 (𝜑𝐽 = ((𝐸 / (2 · (𝐶↑2))) − 1))
184183oveq1d 6564 . . . . . . . 8 (𝜑 → (𝐽 + 1) = (((𝐸 / (2 · (𝐶↑2))) − 1) + 1))
185143zcnd 11359 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
186154nncnd 10913 . . . . . . . . . 10 (𝜑 → (2 · (𝐶↑2)) ∈ ℂ)
187154nnne0d 10942 . . . . . . . . . 10 (𝜑 → (2 · (𝐶↑2)) ≠ 0)
188185, 186, 187divcld 10680 . . . . . . . . 9 (𝜑 → (𝐸 / (2 · (𝐶↑2))) ∈ ℂ)
189 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
190 npcan 10169 . . . . . . . . 9 (((𝐸 / (2 · (𝐶↑2))) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐸 / (2 · (𝐶↑2))) − 1) + 1) = (𝐸 / (2 · (𝐶↑2))))
191188, 189, 190sylancl 693 . . . . . . . 8 (𝜑 → (((𝐸 / (2 · (𝐶↑2))) − 1) + 1) = (𝐸 / (2 · (𝐶↑2))))
192184, 191eqtrd 2644 . . . . . . 7 (𝜑 → (𝐽 + 1) = (𝐸 / (2 · (𝐶↑2))))
193192oveq1d 6564 . . . . . 6 (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = ((𝐸 / (2 · (𝐶↑2))) · (2 · (𝐶↑2))))
194185, 186, 187divcan1d 10681 . . . . . 6 (𝜑 → ((𝐸 / (2 · (𝐶↑2))) · (2 · (𝐶↑2))) = 𝐸)
195193, 194eqtr2d 2645 . . . . 5 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
19644nn0zd 11356 . . . . . . 7 (𝜑𝐹 ∈ ℤ)
19778nn0zd 11356 . . . . . . . 8 (𝜑 → ((𝐹↑2) − 𝐴) ∈ ℤ)
198196, 197zmulcld 11364 . . . . . . 7 (𝜑 → (𝐹 · ((𝐹↑2) − 𝐴)) ∈ ℤ)
199 dvdsmul1 14841 . . . . . . 7 ((𝐹 ∈ ℤ ∧ (𝐹 · ((𝐹↑2) − 𝐴)) ∈ ℤ) → 𝐹 ∥ (𝐹 · (𝐹 · ((𝐹↑2) − 𝐴))))
200196, 198, 199syl2anc 691 . . . . . 6 (𝜑𝐹 ∥ (𝐹 · (𝐹 · ((𝐹↑2) − 𝐴))))
20147oveq1i 6559 . . . . . . 7 (𝐺𝐴) = ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − 𝐴)
20254nn0cnd 11230 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
20379nn0cnd 11230 . . . . . . . . 9 (𝜑 → ((𝐹↑2) · ((𝐹↑2) − 𝐴)) ∈ ℂ)
204202, 203pncan2d 10273 . . . . . . . 8 (𝜑 → ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − 𝐴) = ((𝐹↑2) · ((𝐹↑2) − 𝐴)))
20549oveq1d 6564 . . . . . . . 8 (𝜑 → ((𝐹↑2) · ((𝐹↑2) − 𝐴)) = ((𝐹 · 𝐹) · ((𝐹↑2) − 𝐴)))
20678nn0cnd 11230 . . . . . . . . 9 (𝜑 → ((𝐹↑2) − 𝐴) ∈ ℂ)
20748, 48, 206mulassd 9942 . . . . . . . 8 (𝜑 → ((𝐹 · 𝐹) · ((𝐹↑2) − 𝐴)) = (𝐹 · (𝐹 · ((𝐹↑2) − 𝐴))))
208204, 205, 2073eqtrd 2648 . . . . . . 7 (𝜑 → ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − 𝐴) = (𝐹 · (𝐹 · ((𝐹↑2) − 𝐴))))
209201, 208syl5eq 2656 . . . . . 6 (𝜑 → (𝐺𝐴) = (𝐹 · (𝐹 · ((𝐹↑2) − 𝐴))))
210200, 209breqtrrd 4611 . . . . 5 (𝜑𝐹 ∥ (𝐺𝐴))
211182, 195, 2103jca 1235 . . . 4 (𝜑 → (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺𝐴)))
212 zmulcl 11303 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
21310, 14, 212sylancr 694 . . . . . . 7 (𝜑 → (2 · 𝐶) ∈ ℤ)
214 eluzelz 11573 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2152, 214syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
21679nn0zd 11356 . . . . . . 7 (𝜑 → ((𝐹↑2) · ((𝐹↑2) − 𝐴)) ∈ ℤ)
217 1z 11284 . . . . . . . 8 1 ∈ ℤ
218 zsubcl 11296 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ)
219217, 215, 218sylancr 694 . . . . . . . 8 (𝜑 → (1 − 𝐴) ∈ ℤ)
220 zmulcl 11303 . . . . . . . 8 ((1 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (1 · (1 − 𝐴)) ∈ ℤ)
221217, 219, 220sylancr 694 . . . . . . 7 (𝜑 → (1 · (1 − 𝐴)) ∈ ℤ)
222 congid 36556 . . . . . . . 8 (((2 · 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐶) ∥ (𝐴𝐴))
223213, 215, 222syl2anc 691 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐴𝐴))
22451nn0zd 11356 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℤ)
225217a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
22613nncnd 10913 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
227128, 226, 226mulassd 9942 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝐶) · 𝐶) = (2 · (𝐶 · 𝐶)))
228226sqvald 12867 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) = (𝐶 · 𝐶))
229228oveq2d 6565 . . . . . . . . . . . . . 14 (𝜑 → (2 · (𝐶↑2)) = (2 · (𝐶 · 𝐶)))
230227, 229eqtr4d 2647 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐶) · 𝐶) = (2 · (𝐶↑2)))
231230, 142eqbrtrd 4605 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐶) · 𝐶) ∥ 𝐸)
232 muldvds1 14844 . . . . . . . . . . . . 13 (((2 · 𝐶) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐸 ∈ ℤ) → (((2 · 𝐶) · 𝐶) ∥ 𝐸 → (2 · 𝐶) ∥ 𝐸))
233213, 14, 143, 232syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐶) · 𝐶) ∥ 𝐸 → (2 · 𝐶) ∥ 𝐸))
234231, 233mpd 15 . . . . . . . . . . 11 (𝜑 → (2 · 𝐶) ∥ 𝐸)
235 zsqcl 12796 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
236215, 235syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐴↑2) ∈ ℤ)
237 peano2zm 11297 . . . . . . . . . . . . . 14 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) − 1) ∈ ℤ)
238236, 237syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐴↑2) − 1) ∈ ℤ)
239238, 143zmulcld 11364 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) − 1) · 𝐸) ∈ ℤ)
240 dvdsmultr2 14859 . . . . . . . . . . . 12 (((2 · 𝐶) ∈ ℤ ∧ (((𝐴↑2) − 1) · 𝐸) ∈ ℤ ∧ 𝐸 ∈ ℤ) → ((2 · 𝐶) ∥ 𝐸 → (2 · 𝐶) ∥ ((((𝐴↑2) − 1) · 𝐸) · 𝐸)))
241213, 239, 143, 240syl3anc 1318 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐶) ∥ 𝐸 → (2 · 𝐶) ∥ ((((𝐴↑2) − 1) · 𝐸) · 𝐸)))
242234, 241mpd 15 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∥ ((((𝐴↑2) − 1) · 𝐸) · 𝐸))
243185sqvald 12867 . . . . . . . . . . . 12 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
244243oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) − 1) · (𝐸↑2)) = (((𝐴↑2) − 1) · (𝐸 · 𝐸)))
245202sqcld 12868 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑2) ∈ ℂ)
246 subcl 10159 . . . . . . . . . . . . 13 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
247245, 189, 246sylancl 693 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) − 1) ∈ ℂ)
248247, 185, 185mulassd 9942 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) − 1) · 𝐸) · 𝐸) = (((𝐴↑2) − 1) · (𝐸 · 𝐸)))
249244, 248eqtr4d 2647 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) − 1) · (𝐸↑2)) = ((((𝐴↑2) − 1) · 𝐸) · 𝐸))
250242, 249breqtrrd 4611 . . . . . . . . 9 (𝜑 → (2 · 𝐶) ∥ (((𝐴↑2) − 1) · (𝐸↑2)))
25148sqcld 12868 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ∈ ℂ)
252185sqcld 12868 . . . . . . . . . . . 12 (𝜑 → (𝐸↑2) ∈ ℂ)
253247, 252mulcld 9939 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) − 1) · (𝐸↑2)) ∈ ℂ)
254189a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
255 subsub23 10165 . . . . . . . . . . 11 (((𝐹↑2) ∈ ℂ ∧ (((𝐴↑2) − 1) · (𝐸↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ↔ ((𝐹↑2) − 1) = (((𝐴↑2) − 1) · (𝐸↑2))))
256251, 253, 254, 255syl3anc 1318 . . . . . . . . . 10 (𝜑 → (((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ↔ ((𝐹↑2) − 1) = (((𝐴↑2) − 1) · (𝐸↑2))))
257174, 256mpbid 221 . . . . . . . . 9 (𝜑 → ((𝐹↑2) − 1) = (((𝐴↑2) − 1) · (𝐸↑2)))
258250, 257breqtrrd 4611 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ ((𝐹↑2) − 1))
259 congsub 36555 . . . . . . . . 9 ((((2 · 𝐶) ∈ ℤ ∧ (𝐹↑2) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ ((2 · 𝐶) ∥ ((𝐹↑2) − 1) ∧ (2 · 𝐶) ∥ (𝐴𝐴))) → (2 · 𝐶) ∥ (((𝐹↑2) − 𝐴) − (1 − 𝐴)))
260213, 224, 225, 215, 215, 258, 223, 259syl322anc 1346 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (((𝐹↑2) − 𝐴) − (1 − 𝐴)))
261 congmul 36552 . . . . . . . 8 ((((2 · 𝐶) ∈ ℤ ∧ (𝐹↑2) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (((𝐹↑2) − 𝐴) ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) ∧ ((2 · 𝐶) ∥ ((𝐹↑2) − 1) ∧ (2 · 𝐶) ∥ (((𝐹↑2) − 𝐴) − (1 − 𝐴)))) → (2 · 𝐶) ∥ (((𝐹↑2) · ((𝐹↑2) − 𝐴)) − (1 · (1 − 𝐴))))
262213, 224, 225, 197, 219, 258, 260, 261syl322anc 1346 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (((𝐹↑2) · ((𝐹↑2) − 𝐴)) − (1 · (1 − 𝐴))))
263 congadd 36551 . . . . . . 7 ((((2 · 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (((𝐹↑2) · ((𝐹↑2) − 𝐴)) ∈ ℤ ∧ (1 · (1 − 𝐴)) ∈ ℤ) ∧ ((2 · 𝐶) ∥ (𝐴𝐴) ∧ (2 · 𝐶) ∥ (((𝐹↑2) · ((𝐹↑2) − 𝐴)) − (1 · (1 − 𝐴))))) → (2 · 𝐶) ∥ ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − (𝐴 + (1 · (1 − 𝐴)))))
264213, 215, 215, 216, 221, 223, 262, 263syl322anc 1346 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − (𝐴 + (1 · (1 − 𝐴)))))
26547a1i 11 . . . . . . 7 (𝜑𝐺 = (𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))))
266219zcnd 11359 . . . . . . . . . 10 (𝜑 → (1 − 𝐴) ∈ ℂ)
267266mulid2d 9937 . . . . . . . . 9 (𝜑 → (1 · (1 − 𝐴)) = (1 − 𝐴))
268267oveq2d 6565 . . . . . . . 8 (𝜑 → (𝐴 + (1 · (1 − 𝐴))) = (𝐴 + (1 − 𝐴)))
269 pncan3 10168 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1)
270202, 189, 269sylancl 693 . . . . . . . 8 (𝜑 → (𝐴 + (1 − 𝐴)) = 1)
271268, 270eqtr2d 2645 . . . . . . 7 (𝜑 → 1 = (𝐴 + (1 · (1 − 𝐴))))
272265, 271oveq12d 6567 . . . . . 6 (𝜑 → (𝐺 − 1) = ((𝐴 + ((𝐹↑2) · ((𝐹↑2) − 𝐴))) − (𝐴 + (1 · (1 − 𝐴)))))
273264, 272breqtrrd 4611 . . . . 5 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
274 jm2.15nn0 36588 . . . . . . . 8 ((𝐺 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → (𝐺𝐴) ∥ ((𝐺 Yrm 𝐵) − (𝐴 Yrm 𝐵)))
27582, 2, 90, 274syl3anc 1318 . . . . . . 7 (𝜑 → (𝐺𝐴) ∥ ((𝐺 Yrm 𝐵) − (𝐴 Yrm 𝐵)))
27685a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝐺 Yrm 𝐵))
277276, 12oveq12d 6567 . . . . . . 7 (𝜑 → (𝐻𝐶) = ((𝐺 Yrm 𝐵) − (𝐴 Yrm 𝐵)))
278275, 277breqtrrd 4611 . . . . . 6 (𝜑 → (𝐺𝐴) ∥ (𝐻𝐶))
279 eluzelz 11573 . . . . . . . . 9 (𝐺 ∈ (ℤ‘2) → 𝐺 ∈ ℤ)
28082, 279syl 17 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
281280, 215zsubcld 11363 . . . . . . 7 (𝜑 → (𝐺𝐴) ∈ ℤ)
28285, 87syl5eqel 2692 . . . . . . . 8 (𝜑𝐻 ∈ ℤ)
283282, 14zsubcld 11363 . . . . . . 7 (𝜑 → (𝐻𝐶) ∈ ℤ)
284 dvdstr 14856 . . . . . . 7 ((𝐹 ∈ ℤ ∧ (𝐺𝐴) ∈ ℤ ∧ (𝐻𝐶) ∈ ℤ) → ((𝐹 ∥ (𝐺𝐴) ∧ (𝐺𝐴) ∥ (𝐻𝐶)) → 𝐹 ∥ (𝐻𝐶)))
285196, 281, 283, 284syl3anc 1318 . . . . . 6 (𝜑 → ((𝐹 ∥ (𝐺𝐴) ∧ (𝐺𝐴) ∥ (𝐻𝐶)) → 𝐹 ∥ (𝐻𝐶)))
286210, 278, 285mp2and 711 . . . . 5 (𝜑𝐹 ∥ (𝐻𝐶))
287 jm2.16nn0 36589 . . . . . . . . 9 ((𝐺 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝐵) − 𝐵))
28882, 90, 287syl2anc 691 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝐵) − 𝐵))
28985oveq1i 6559 . . . . . . . 8 (𝐻𝐵) = ((𝐺 Yrm 𝐵) − 𝐵)
290288, 289syl6breqr 4625 . . . . . . 7 (𝜑 → (𝐺 − 1) ∥ (𝐻𝐵))
291 peano2zm 11297 . . . . . . . . 9 (𝐺 ∈ ℤ → (𝐺 − 1) ∈ ℤ)
292280, 291syl 17 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∈ ℤ)
293282, 4zsubcld 11363 . . . . . . . 8 (𝜑 → (𝐻𝐵) ∈ ℤ)
294 dvdstr 14856 . . . . . . . 8 (((2 · 𝐶) ∈ ℤ ∧ (𝐺 − 1) ∈ ℤ ∧ (𝐻𝐵) ∈ ℤ) → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻𝐵)) → (2 · 𝐶) ∥ (𝐻𝐵)))
295213, 292, 293, 294syl3anc 1318 . . . . . . 7 (𝜑 → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻𝐵)) → (2 · 𝐶) ∥ (𝐻𝐵)))
296273, 290, 295mp2and 711 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
297 rmygeid 36549 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → 𝐵 ≤ (𝐴 Yrm 𝐵))
2982, 90, 297syl2anc 691 . . . . . . 7 (𝜑𝐵 ≤ (𝐴 Yrm 𝐵))
299298, 12breqtrrd 4611 . . . . . 6 (𝜑𝐵𝐶)
300296, 299jca 553 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶))
301273, 286, 300jca31 555 . . . 4 (𝜑 → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶)))
302175, 211, 301jca31 555 . . 3 (𝜑 → (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶))))
303160, 302jca 553 . 2 (𝜑 → (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶)))))
30445, 103, 303jca31 555 1 (𝜑 → (((𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝐹 ∈ ℕ0) ∧ (𝐺 ∈ ℕ0𝐻 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝐽 ∈ ℕ0 ∧ (((((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ∧ 𝐺 ∈ (ℤ‘2)) ∧ (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ∧ 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))) ∧ 𝐹 ∥ (𝐺𝐴))) ∧ (((2 · 𝐶) ∥ (𝐺 − 1) ∧ 𝐹 ∥ (𝐻𝐶)) ∧ ((2 · 𝐶) ∥ (𝐻𝐵) ∧ 𝐵𝐶))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ↑cexp 12722   ∥ cdvds 14821   Xrm crmx 36482   Yrm crmy 36483 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485 This theorem is referenced by:  jm2.27  36593
 Copyright terms: Public domain W3C validator