Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem2 Structured version   Visualization version   GIF version

Theorem ivthlem2 23028
 Description: Lemma for ivth 23030. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
ivth.11 𝐶 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
ivthlem2 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝑆   𝑥,𝑈

Proof of Theorem ivthlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . . . 5 (𝜑𝐹 ∈ (𝐷cn→ℂ))
21adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐹 ∈ (𝐷cn→ℂ))
3 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
4 ivth.11 . . . . . . . 8 𝐶 = sup(𝑆, ℝ, < )
5 ivth.10 . . . . . . . . . . . 12 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
6 ssrab2 3650 . . . . . . . . . . . 12 {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈} ⊆ (𝐴[,]𝐵)
75, 6eqsstri 3598 . . . . . . . . . . 11 𝑆 ⊆ (𝐴[,]𝐵)
8 ivth.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
9 ivth.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
10 iccssre 12126 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
127, 11syl5ss 3579 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℝ)
13 ivth.3 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
14 ivth.4 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
15 ivth.8 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
178, 9, 13, 14, 3, 1, 15, 16, 5ivthlem1 23027 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
1817simpld 474 . . . . . . . . . . 11 (𝜑𝐴𝑆)
19 ne0i 3880 . . . . . . . . . . 11 (𝐴𝑆𝑆 ≠ ∅)
2018, 19syl 17 . . . . . . . . . 10 (𝜑𝑆 ≠ ∅)
2117simprd 478 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
22 breq2 4587 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑧𝑥𝑧𝐵))
2322ralbidv 2969 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (∀𝑧𝑆 𝑧𝑥 ↔ ∀𝑧𝑆 𝑧𝐵))
2423rspcev 3282 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ∀𝑧𝑆 𝑧𝐵) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
259, 21, 24syl2anc 691 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
2612, 20, 253jca 1235 . . . . . . . . 9 (𝜑 → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
27 suprcl 10862 . . . . . . . . 9 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → sup(𝑆, ℝ, < ) ∈ ℝ)
2826, 27syl 17 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
294, 28syl5eqel 2692 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
30 suprub 10863 . . . . . . . . 9 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
3126, 18, 30syl2anc 691 . . . . . . . 8 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
3231, 4syl6breqr 4625 . . . . . . 7 (𝜑𝐴𝐶)
33 suprleub 10866 . . . . . . . . . 10 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3426, 9, 33syl2anc 691 . . . . . . . . 9 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3521, 34mpbird 246 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
364, 35syl5eqbr 4618 . . . . . . 7 (𝜑𝐶𝐵)
37 elicc2 12109 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
388, 9, 37syl2anc 691 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
3929, 32, 36, 38mpbir3and 1238 . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
403, 39sseldd 3569 . . . . 5 (𝜑𝐶𝐷)
4140adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐶𝐷)
4215ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
43 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4443eleq1d 2672 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐶) ∈ ℝ))
4544rspcv 3278 . . . . . . 7 (𝐶 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝐶) ∈ ℝ))
4639, 42, 45sylc 63 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℝ)
47 difrp 11744 . . . . . 6 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4846, 13, 47syl2anc 691 . . . . 5 (𝜑 → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4948biimpa 500 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝑈 − (𝐹𝐶)) ∈ ℝ+)
50 cncfi 22505 . . . 4 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝐶𝐷 ∧ (𝑈 − (𝐹𝐶)) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
512, 41, 49, 50syl3anc 1318 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
52 ssralv 3629 . . . . . . 7 ((𝐴[,]𝐵) ⊆ 𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
533, 52syl 17 . . . . . 6 (𝜑 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
5453ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
559ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐵 ∈ ℝ)
5629ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ∈ ℝ)
57 rphalfcl 11734 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
5857adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ+)
5958rpred 11748 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ)
6056, 59readdcld 9948 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) ∈ ℝ)
6155, 60ifcld 4081 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ)
628ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ∈ ℝ)
6332ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴𝐶)
6416simprd 478 . . . . . . . . . . . . . . 15 (𝜑𝑈 < (𝐹𝐵))
658rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
669rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
678, 9, 14ltled 10064 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
68 ubicc2 12160 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6965, 66, 67, 68syl3anc 1318 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
70 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
7170eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
7271rspcv 3278 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝐵) ∈ ℝ))
7369, 42, 72sylc 63 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝐵) ∈ ℝ)
74 lttr 9993 . . . . . . . . . . . . . . . 16 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
7546, 13, 73, 74syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
7664, 75mpan2d 706 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < 𝑈 → (𝐹𝐶) < (𝐹𝐵)))
7776imp 444 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝐹𝐶) < (𝐹𝐵))
7877adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐹𝐶) < (𝐹𝐵))
7946ltnrd 10050 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝐶) < (𝐹𝐶))
80 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐶 → (𝐹𝐵) = (𝐹𝐶))
8180breq2d 4595 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐶 → ((𝐹𝐶) < (𝐹𝐵) ↔ (𝐹𝐶) < (𝐹𝐶)))
8281notbid 307 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (¬ (𝐹𝐶) < (𝐹𝐵) ↔ ¬ (𝐹𝐶) < (𝐹𝐶)))
8379, 82syl5ibrcom 236 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 = 𝐶 → ¬ (𝐹𝐶) < (𝐹𝐵)))
8483necon2ad 2797 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐵𝐶))
8584, 36jctild 564 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → (𝐶𝐵𝐵𝐶)))
8629, 9ltlend 10061 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐵 ↔ (𝐶𝐵𝐵𝐶)))
8785, 86sylibrd 248 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8887ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8978, 88mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < 𝐵)
9056, 58ltaddrpd 11781 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < (𝐶 + (𝑧 / 2)))
91 breq2 4587 . . . . . . . . . . . 12 (𝐵 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝐵𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
92 breq2 4587 . . . . . . . . . . . 12 ((𝐶 + (𝑧 / 2)) = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < (𝐶 + (𝑧 / 2)) ↔ 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
9391, 92ifboth 4074 . . . . . . . . . . 11 ((𝐶 < 𝐵𝐶 < (𝐶 + (𝑧 / 2))) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
9489, 90, 93syl2anc 691 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
9556, 61, 94ltled 10064 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
9662, 56, 61, 63, 95letrd 10073 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
97 min1 11894 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
9855, 60, 97syl2anc 691 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
99 elicc2 12109 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
1008, 9, 99syl2anc 691 . . . . . . . . 9 (𝜑 → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
101100ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
10261, 96, 98, 101mpbir3and 1238 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵))
10356, 61, 95abssubge0d 14018 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) = (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶))
104 rpre 11715 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
105104adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
10656, 105readdcld 9948 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + 𝑧) ∈ ℝ)
107 min2 11895 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
10855, 60, 107syl2anc 691 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
109 rphalflt 11736 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
110109adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) < 𝑧)
11159, 105, 56, 110ltadd2dd 10075 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) < (𝐶 + 𝑧))
11261, 60, 106, 108, 111lelttrd 10074 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧))
11361, 56, 105ltsubadd2d 10504 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧 ↔ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧)))
114112, 113mpbird 246 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧)
115103, 114eqbrtrd 4605 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧)
116 oveq1 6556 . . . . . . . . . . 11 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝑦𝐶) = (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶))
117116fveq2d 6107 . . . . . . . . . 10 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (abs‘(𝑦𝐶)) = (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)))
118117breq1d 4593 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → ((abs‘(𝑦𝐶)) < 𝑧 ↔ (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧))
119 breq2 4587 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝑦𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
120118, 119anbi12d 743 . . . . . . . 8 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) ↔ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))))
121120rspcev 3282 . . . . . . 7 ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ∧ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
122102, 115, 94, 121syl12anc 1316 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
123 r19.29 3054 . . . . . . 7 ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)))
124 pm3.45 875 . . . . . . . . . 10 (((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦)))
125124imp 444 . . . . . . . . 9 ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦))
126 simprr 792 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 < 𝑦)
127 simprl 790 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
128 simplll 794 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝜑)
129128, 42syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
130 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
131130eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
132131rspcv 3278 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑦) ∈ ℝ))
133127, 129, 132sylc 63 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
134128, 46syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℝ)
135128, 13syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℝ)
136135, 134resubcld 10337 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑈 − (𝐹𝐶)) ∈ ℝ)
137133, 134, 136absdifltd 14020 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ↔ (((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))))))
138 ltle 10005 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑦) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
139133, 135, 138syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
140134recnd 9947 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℂ)
141135recnd 9947 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℂ)
142140, 141pncan3d 10274 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) = 𝑈)
143142breq2d 4595 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) ↔ (𝐹𝑦) < 𝑈))
144130breq1d 4593 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝑦) ≤ 𝑈))
145144, 5elrab2 3333 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ≤ 𝑈))
146145baib 942 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴[,]𝐵) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
147146ad2antrl 760 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
148139, 143, 1473imtr4d 282 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → 𝑦𝑆))
149 suprub 10863 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦 ≤ sup(𝑆, ℝ, < ))
150149, 4syl6breqr 4625 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦𝐶)
151150ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → (𝑦𝑆𝑦𝐶))
152128, 26, 1513syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆𝑦𝐶))
153128, 11syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐴[,]𝐵) ⊆ ℝ)
154153, 127sseldd 3569 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ ℝ)
155128, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 ∈ ℝ)
156154, 155lenltd 10062 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝐶 ↔ ¬ 𝐶 < 𝑦))
157152, 156sylibd 228 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 → ¬ 𝐶 < 𝑦))
158148, 157syld 46 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → ¬ 𝐶 < 𝑦))
159158adantld 482 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶)))) → ¬ 𝐶 < 𝑦))
160137, 159sylbid 229 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ 𝐶 < 𝑦))
161126, 160mt2d 130 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ¬ (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))
162161pm2.21d 117 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈))
163162expr 641 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐶 < 𝑦 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈)))
164163com23 84 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → (𝐶 < 𝑦 → ¬ (𝐹𝐶) < 𝑈)))
165164impd 446 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦) → ¬ (𝐹𝐶) < 𝑈))
166125, 165syl5 33 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
167166rexlimdva 3013 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
168123, 167syl5 33 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
169122, 168mpan2d 706 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
17054, 169syld 46 . . . 4 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
171170rexlimdva 3013 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
17251, 171mpd 15 . 2 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ¬ (𝐹𝐶) < 𝑈)
173172pm2.01da 457 1 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874  ifcif 4036   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  supcsup 8229  ℂcc 9813  ℝcr 9814   + caddc 9818  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  ℝ+crp 11708  [,]cicc 12049  abscabs 13822  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-icc 12053  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-cncf 22489 This theorem is referenced by:  ivthlem3  23029
 Copyright terms: Public domain W3C validator