Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem1 Structured version   Visualization version   GIF version

Theorem ivthlem1 23027
 Description: Lemma for ivth 23030. The set 𝑆 of all 𝑥 values with (𝐹‘𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
Assertion
Ref Expression
ivthlem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐷,𝑧   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝐴   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem ivthlem1
StepHypRef Expression
1 ivth.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 9968 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 9968 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . . 5 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 10064 . . . 4 (𝜑𝐴𝐵)
7 lbicc2 12159 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1318 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
109ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
11 fveq2 6103 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1211eleq1d 2672 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
1312rspcv 3278 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝐴) ∈ ℝ))
148, 10, 13sylc 63 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
15 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
16 ivth.9 . . . . 5 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716simpld 474 . . . 4 (𝜑 → (𝐹𝐴) < 𝑈)
1814, 15, 17ltled 10064 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
1911breq1d 4593 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝐴) ≤ 𝑈))
20 ivth.10 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
2119, 20elrab2 3333 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) ≤ 𝑈))
228, 18, 21sylanbrc 695 . 2 (𝜑𝐴𝑆)
23 ssrab2 3650 . . . . . 6 {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈} ⊆ (𝐴[,]𝐵)
2420, 23eqsstri 3598 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
2524sseli 3564 . . . 4 (𝑧𝑆𝑧 ∈ (𝐴[,]𝐵))
26 iccleub 12100 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
27263expia 1259 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
282, 4, 27syl2anc 691 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
2925, 28syl5 33 . . 3 (𝜑 → (𝑧𝑆𝑧𝐵))
3029ralrimiv 2948 . 2 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
3122, 30jca 553 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  [,]cicc 12049  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053 This theorem is referenced by:  ivthlem2  23028  ivthlem3  23029
 Copyright terms: Public domain W3C validator