Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   GIF version

Theorem itg2monolem3 23325
 Description: Lemma for itg2mono 23326. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃𝑟𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem3 (𝜑 → (∫1𝑃) ≤ 𝑆)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
2 itg2mono.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
3 itg2mono.3 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
4 itg2mono.4 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
5 itg2mono.5 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6 itg2mono.6 . . . . . . . . . 10 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
7 itg2monolem2.7 . . . . . . . . . 10 (𝜑𝑃 ∈ dom ∫1)
8 itg2monolem2.8 . . . . . . . . . 10 (𝜑𝑃𝑟𝐺)
9 itg2monolem2.9 . . . . . . . . . 10 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 23324 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℝ)
1211recnd 9947 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → 𝑆 ∈ ℂ)
137adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑃 ∈ dom ∫1)
14 itg1cl 23258 . . . . . . . . 9 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℝ)
1615recnd 9947 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ∈ ℂ)
17 simpr 476 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
1817rpred 11748 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ)
1911, 18readdcld 9948 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℝ)
2019recnd 9947 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ∈ ℂ)
21 0red 9920 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ∈ ℝ)
22 0xr 9965 . . . . . . . . . . . 12 0 ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ*)
24 1nn 10908 . . . . . . . . . . . . 13 1 ∈ ℕ
25 icossicc 12131 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ (0[,]+∞)
26 fss 5969 . . . . . . . . . . . . . . 15 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
273, 25, 26sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
2827ralrimiva 2949 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
29 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
3029feq1d 5943 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
3130rspcv 3278 . . . . . . . . . . . . 13 (1 ∈ ℕ → (∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞) → (𝐹‘1):ℝ⟶(0[,]+∞)))
3224, 28, 31mpsyl 66 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
33 itg2cl 23305 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
35 itg2cl 23305 . . . . . . . . . . . . . . . 16 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
3627, 35syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
37 eqid 2610 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
3836, 37fmptd 6292 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
39 frn 5966 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
4038, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
41 supxrcl 12017 . . . . . . . . . . . . 13 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
4240, 41syl 17 . . . . . . . . . . . 12 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
436, 42syl5eqel 2692 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
44 itg2ge0 23308 . . . . . . . . . . . 12 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
4532, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
4629fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
47 fvex 6113 . . . . . . . . . . . . . . . 16 (∫2‘(𝐹‘1)) ∈ V
4846, 37, 47fvmpt 6191 . . . . . . . . . . . . . . 15 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
4924, 48ax-mp 5 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
50 ffn 5958 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ* → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
5138, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
52 fnfvelrn 6264 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5351, 24, 52sylancl 693 . . . . . . . . . . . . . 14 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
5449, 53syl5eqelr 2693 . . . . . . . . . . . . 13 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
55 supxrub 12026 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5640, 54, 55syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
5756, 6syl6breqr 4625 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
5823, 34, 43, 45, 57xrletrd 11869 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑆)
5958adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 ≤ 𝑆)
6011, 17ltaddrpd 11781 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (𝑆 + 𝑡))
6121, 11, 19, 59, 60lelttrd 10074 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 0 < (𝑆 + 𝑡))
6261gt0ne0d 10471 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑆 + 𝑡) ≠ 0)
6312, 16, 20, 62div23d 10717 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) = ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)))
6411, 19, 62redivcld 10732 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ∈ ℝ)
6564, 15remulcld 9949 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ∈ ℝ)
66 halfre 11123 . . . . . . . . 9 (1 / 2) ∈ ℝ
67 ifcl 4080 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6864, 66, 67sylancl 693 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ)
6968, 15remulcld 9949 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ∈ ℝ)
70 max2 11892 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
7166, 64, 70sylancr 694 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
727, 14syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∫1𝑃) ∈ ℝ)
7372rexrd 9968 . . . . . . . . . . . . 13 (𝜑 → (∫1𝑃) ∈ ℝ*)
74 xrltnle 9984 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
7543, 73, 74syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
769, 75mpbird 246 . . . . . . . . . . 11 (𝜑𝑆 < (∫1𝑃))
7776adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < (∫1𝑃))
7821, 11, 15, 59, 77lelttrd 10074 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < (∫1𝑃))
79 lemul1 10754 . . . . . . . . 9 (((𝑆 / (𝑆 + 𝑡)) ∈ ℝ ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ ((∫1𝑃) ∈ ℝ ∧ 0 < (∫1𝑃))) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
8064, 68, 15, 78, 79syl112anc 1322 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ↔ ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃))))
8171, 80mpbid 221 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
822adantlr 747 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
833adantlr 747 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
844adantlr 747 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∘𝑟 ≤ (𝐹‘(𝑛 + 1)))
855adantlr 747 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
8666a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ∈ ℝ)
87 halfgt0 11125 . . . . . . . . . . 11 0 < (1 / 2)
8887a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 0 < (1 / 2))
89 max1 11890 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ ∧ (𝑆 / (𝑆 + 𝑡)) ∈ ℝ) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9066, 64, 89sylancr 694 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / 2) ≤ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9121, 86, 68, 88, 90ltletrd 10076 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)))
9220mulid1d 9936 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 + 𝑡) · 1) = (𝑆 + 𝑡))
9360, 92breqtrrd 4611 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑆 < ((𝑆 + 𝑡) · 1))
94 1red 9934 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 1 ∈ ℝ)
95 ltdivmul 10777 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9611, 94, 19, 61, 95syl112anc 1322 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ 𝑆 < ((𝑆 + 𝑡) · 1)))
9793, 96mpbird 246 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (𝑆 / (𝑆 + 𝑡)) < 1)
98 halflt1 11127 . . . . . . . . . 10 (1 / 2) < 1
99 breq1 4586 . . . . . . . . . . 11 ((𝑆 / (𝑆 + 𝑡)) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((𝑆 / (𝑆 + 𝑡)) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
100 breq1 4586 . . . . . . . . . . 11 ((1 / 2) = if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) → ((1 / 2) < 1 ↔ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10199, 100ifboth 4074 . . . . . . . . . 10 (((𝑆 / (𝑆 + 𝑡)) < 1 ∧ (1 / 2) < 1) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
10297, 98, 101sylancl 693 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)
103 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
104103rexri 9976 . . . . . . . . . 10 1 ∈ ℝ*
105 elioo2 12087 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1)))
10622, 104, 105mp2an 704 . . . . . . . . 9 (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ ℝ ∧ 0 < if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∧ if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) < 1))
10768, 91, 102, 106syl3anbrc 1239 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) ∈ (0(,)1))
1088adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → 𝑃𝑟𝐺)
109 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑃𝑦) = (𝑃𝑥))
110109oveq2d 6565 . . . . . . . . . . 11 (𝑦 = 𝑥 → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) = (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)))
111 fveq2 6103 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑥))
112110, 111breq12d 4596 . . . . . . . . . 10 (𝑦 = 𝑥 → ((if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦) ↔ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)))
113112cbvrabv 3172 . . . . . . . . 9 {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)} = {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)}
114113mpteq2i 4669 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑦 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑦)) ≤ ((𝐹𝑛)‘𝑦)}) = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (𝑃𝑥)) ≤ ((𝐹𝑛)‘𝑥)})
1151, 82, 83, 84, 85, 6, 107, 13, 108, 11, 114itg2monolem1 23323 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)) ≤ 𝑆)
11665, 69, 11, 81, 115letrd 10073 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 / (𝑆 + 𝑡)) · (∫1𝑃)) ≤ 𝑆)
11763, 116eqbrtrd 4605 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆)
11811, 15remulcld 9949 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ∈ ℝ)
119 ledivmul2 10781 . . . . . 6 (((𝑆 · (∫1𝑃)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ((𝑆 + 𝑡) ∈ ℝ ∧ 0 < (𝑆 + 𝑡))) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
120118, 11, 19, 61, 119syl112anc 1322 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → (((𝑆 · (∫1𝑃)) / (𝑆 + 𝑡)) ≤ 𝑆 ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
121117, 120mpbid 221 . . . 4 ((𝜑𝑡 ∈ ℝ+) → (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡)))
12268, 15, 91, 78mulgt0d 10071 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 0 < (if((1 / 2) ≤ (𝑆 / (𝑆 + 𝑡)), (𝑆 / (𝑆 + 𝑡)), (1 / 2)) · (∫1𝑃)))
12321, 69, 11, 122, 115ltletrd 10076 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → 0 < 𝑆)
124 lemul2 10755 . . . . 5 (((∫1𝑃) ∈ ℝ ∧ (𝑆 + 𝑡) ∈ ℝ ∧ (𝑆 ∈ ℝ ∧ 0 < 𝑆)) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
12515, 19, 11, 123, 124syl112anc 1322 . . . 4 ((𝜑𝑡 ∈ ℝ+) → ((∫1𝑃) ≤ (𝑆 + 𝑡) ↔ (𝑆 · (∫1𝑃)) ≤ (𝑆 · (𝑆 + 𝑡))))
126121, 125mpbird 246 . . 3 ((𝜑𝑡 ∈ ℝ+) → (∫1𝑃) ≤ (𝑆 + 𝑡))
127126ralrimiva 2949 . 2 (𝜑 → ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡))
128 alrple 11911 . . 3 (((∫1𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
12972, 10, 128syl2anc 691 . 2 (𝜑 → ((∫1𝑃) ≤ 𝑆 ↔ ∀𝑡 ∈ ℝ+ (∫1𝑃) ≤ (𝑆 + 𝑡)))
130127, 129mpbird 246 1 (𝜑 → (∫1𝑃) ≤ 𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑟 cofr 6794  supcsup 8229  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  2c2 10947  ℝ+crp 11708  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  MblFncmbf 23189  ∫1citg1 23190  ∫2citg2 23191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196 This theorem is referenced by:  itg2mono  23326
 Copyright terms: Public domain W3C validator