MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem3 Structured version   Visualization version   Unicode version

Theorem itg2monolem3 22703
Description: Lemma for itg2mono 22704. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
itg2mono.2  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
itg2mono.3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
itg2mono.4  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
itg2mono.5  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
itg2mono.6  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
itg2monolem2.7  |-  ( ph  ->  P  e.  dom  S.1 )
itg2monolem2.8  |-  ( ph  ->  P  oR  <_  G )
itg2monolem2.9  |-  ( ph  ->  -.  ( S.1 `  P
)  <_  S )
Assertion
Ref Expression
itg2monolem3  |-  ( ph  ->  ( S.1 `  P
)  <_  S )
Distinct variable groups:    x, n, y, G    P, n, x, y    n, F, x, y    ph, n, x, y    S, n, x, y

Proof of Theorem itg2monolem3
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 itg2mono.1 . . . . . . . . . 10  |-  G  =  ( x  e.  RR  |->  sup ( ran  ( n  e.  NN  |->  ( ( F `  n ) `
 x ) ) ,  RR ,  <  ) )
2 itg2mono.2 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. MblFn
)
3 itg2mono.3 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,) +oo ) )
4 itg2mono.4 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  oR  <_  ( F `  ( n  +  1 ) ) )
5 itg2mono.5 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
6 itg2mono.6 . . . . . . . . . 10  |-  S  =  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )
7 itg2monolem2.7 . . . . . . . . . 10  |-  ( ph  ->  P  e.  dom  S.1 )
8 itg2monolem2.8 . . . . . . . . . 10  |-  ( ph  ->  P  oR  <_  G )
9 itg2monolem2.9 . . . . . . . . . 10  |-  ( ph  ->  -.  ( S.1 `  P
)  <_  S )
101, 2, 3, 4, 5, 6, 7, 8, 9itg2monolem2 22702 . . . . . . . . 9  |-  ( ph  ->  S  e.  RR )
1110adantr 467 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  S  e.  RR )
1211recnd 9666 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  S  e.  CC )
137adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  P  e.  dom  S.1 )
14 itg1cl 22636 . . . . . . . . 9  |-  ( P  e.  dom  S.1  ->  ( S.1 `  P )  e.  RR )
1513, 14syl 17 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S.1 `  P )  e.  RR )
1615recnd 9666 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S.1 `  P )  e.  CC )
17 simpr 463 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  t  e.  RR+ )
1817rpred 11338 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  t  e.  RR )
1911, 18readdcld 9667 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  +  t )  e.  RR )
2019recnd 9666 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  +  t )  e.  CC )
21 0red 9641 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  e.  RR )
22 0xr 9684 . . . . . . . . . . . 12  |-  0  e.  RR*
2322a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR* )
24 1nn 10617 . . . . . . . . . . . . 13  |-  1  e.  NN
25 icossicc 11718 . . . . . . . . . . . . . . 15  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
26 fss 5735 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  n
) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  ( F `  n ) : RR --> ( 0 [,] +oo ) )
273, 25, 26sylancl 667 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n ) : RR --> ( 0 [,] +oo ) )
2827ralrimiva 2801 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,] +oo ) )
29 fveq2 5863 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
3029feq1d 5712 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
( F `  n
) : RR --> ( 0 [,] +oo )  <->  ( F `  1 ) : RR --> ( 0 [,] +oo ) ) )
3130rspcv 3145 . . . . . . . . . . . . 13  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( F `  n ) : RR --> ( 0 [,] +oo )  -> 
( F `  1
) : RR --> ( 0 [,] +oo ) ) )
3224, 28, 31mpsyl 65 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  1
) : RR --> ( 0 [,] +oo ) )
33 itg2cl 22683 . . . . . . . . . . . 12  |-  ( ( F `  1 ) : RR --> ( 0 [,] +oo )  -> 
( S.2 `  ( F `
 1 ) )  e.  RR* )
3432, 33syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( S.2 `  ( F `  1 )
)  e.  RR* )
35 itg2cl 22683 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n ) : RR --> ( 0 [,] +oo )  -> 
( S.2 `  ( F `
 n ) )  e.  RR* )
3627, 35syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( F `  n
) )  e.  RR* )
37 eqid 2450 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( S.2 `  ( F `  n
) ) )  =  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )
3836, 37fmptd 6044 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR* )
39 frn 5733 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR* )
4038, 39syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR* )
41 supxrcl 11597 . . . . . . . . . . . . 13  |-  ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  C_  RR*  ->  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) ,  RR* ,  <  )  e.  RR* )
4240, 41syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  )  e.  RR* )
436, 42syl5eqel 2532 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  RR* )
44 itg2ge0 22686 . . . . . . . . . . . 12  |-  ( ( F `  1 ) : RR --> ( 0 [,] +oo )  -> 
0  <_  ( S.2 `  ( F `  1
) ) )
4532, 44syl 17 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( S.2 `  ( F `  1
) ) )
4629fveq2d 5867 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  ( S.2 `  ( F `  n ) )  =  ( S.2 `  ( F `  1 )
) )
47 fvex 5873 . . . . . . . . . . . . . . . 16  |-  ( S.2 `  ( F `  1
) )  e.  _V
4846, 37, 47fvmpt 5946 . . . . . . . . . . . . . . 15  |-  ( 1  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  1 )  =  ( S.2 `  ( F `  1 )
) )
4924, 48ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) `  1 )  =  ( S.2 `  ( F `  1 )
)
50 ffn 5726 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
5138, 50syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN )
52 fnfvelrn 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) )  Fn  NN  /\  1  e.  NN )  ->  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  1
)  e.  ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) )
5351, 24, 52sylancl 667 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) `  1
)  e.  ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) )
5449, 53syl5eqelr 2533 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S.2 `  ( F `  1 )
)  e.  ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) )
55 supxrub 11607 . . . . . . . . . . . . 13  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) )  C_  RR*  /\  ( S.2 `  ( F ` 
1 ) )  e. 
ran  ( n  e.  NN  |->  ( S.2 `  ( F `  n )
) ) )  -> 
( S.2 `  ( F `
 1 ) )  <_  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  ) )
5640, 54, 55syl2anc 666 . . . . . . . . . . . 12  |-  ( ph  ->  ( S.2 `  ( F `  1 )
)  <_  sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( F `
 n ) ) ) ,  RR* ,  <  ) )
5756, 6syl6breqr 4442 . . . . . . . . . . 11  |-  ( ph  ->  ( S.2 `  ( F `  1 )
)  <_  S )
5823, 34, 43, 45, 57xrletrd 11456 . . . . . . . . . 10  |-  ( ph  ->  0  <_  S )
5958adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <_  S )
6011, 17ltaddrpd 11368 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  S  <  ( S  +  t ) )
6121, 11, 19, 59, 60lelttrd 9790 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  ( S  +  t ) )
6261gt0ne0d 10175 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  +  t )  =/=  0 )
6312, 16, 20, 62div23d 10417 . . . . . 6  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  x.  ( S.1 `  P ) )  / 
( S  +  t ) )  =  ( ( S  /  ( S  +  t )
)  x.  ( S.1 `  P ) ) )
6411, 19, 62redivcld 10432 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  /  ( S  +  t ) )  e.  RR )
6564, 15remulcld 9668 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  /  ( S  +  t ) )  x.  ( S.1 `  P
) )  e.  RR )
66 halfre 10825 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
67 ifcl 3922 . . . . . . . . 9  |-  ( ( ( S  /  ( S  +  t )
)  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  e.  RR )
6864, 66, 67sylancl 667 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  if (
( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  RR )
6968, 15remulcld 9668 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( S.1 `  P
) )  e.  RR )
70 max2 11479 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  ( S  /  ( S  +  t )
)  e.  RR )  ->  ( S  / 
( S  +  t ) )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) ) )
7166, 64, 70sylancr 668 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  /  ( S  +  t ) )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) ) )
727, 14syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S.1 `  P
)  e.  RR )
7372rexrd 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S.1 `  P
)  e.  RR* )
74 xrltnle 9698 . . . . . . . . . . . . 13  |-  ( ( S  e.  RR*  /\  ( S.1 `  P )  e. 
RR* )  ->  ( S  <  ( S.1 `  P
)  <->  -.  ( S.1 `  P )  <_  S
) )
7543, 73, 74syl2anc 666 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  <  ( S.1 `  P )  <->  -.  ( S.1 `  P )  <_  S ) )
769, 75mpbird 236 . . . . . . . . . . 11  |-  ( ph  ->  S  <  ( S.1 `  P ) )
7776adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  S  <  ( S.1 `  P ) )
7821, 11, 15, 59, 77lelttrd 9790 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  ( S.1 `  P ) )
79 lemul1 10454 . . . . . . . . 9  |-  ( ( ( S  /  ( S  +  t )
)  e.  RR  /\  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  RR  /\  (
( S.1 `  P )  e.  RR  /\  0  <  ( S.1 `  P
) ) )  -> 
( ( S  / 
( S  +  t ) )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <-> 
( ( S  / 
( S  +  t ) )  x.  ( S.1 `  P ) )  <_  ( if ( ( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( S.1 `  P
) ) ) )
8064, 68, 15, 78, 79syl112anc 1271 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  /  ( S  +  t ) )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <-> 
( ( S  / 
( S  +  t ) )  x.  ( S.1 `  P ) )  <_  ( if ( ( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( S.1 `  P
) ) ) )
8171, 80mpbid 214 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  /  ( S  +  t ) )  x.  ( S.1 `  P
) )  <_  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( S.1 `  P
) ) )
822adantlr 720 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  n  e.  NN )  ->  ( F `  n )  e. MblFn )
833adantlr 720 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  n  e.  NN )  ->  ( F `  n ) : RR --> ( 0 [,) +oo ) )
844adantlr 720 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  n  e.  NN )  ->  ( F `  n )  oR  <_  ( F `
 ( n  + 
1 ) ) )
855adantlr 720 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  x  e.  RR )  ->  E. y  e.  RR  A. n  e.  NN  ( ( F `
 n ) `  x )  <_  y
)
8666a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  2 )  e.  RR )
87 halfgt0 10827 . . . . . . . . . . 11  |-  0  <  ( 1  /  2
)
8887a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  ( 1  /  2 ) )
89 max1 11477 . . . . . . . . . . 11  |-  ( ( ( 1  /  2
)  e.  RR  /\  ( S  /  ( S  +  t )
)  e.  RR )  ->  ( 1  / 
2 )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) ) )
9066, 64, 89sylancr 668 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  2 )  <_  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) ) )
9121, 86, 68, 88, 90ltletrd 9792 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) ) )
9220mulid1d 9657 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  +  t )  x.  1 )  =  ( S  +  t ) )
9360, 92breqtrrd 4428 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  RR+ )  ->  S  <  ( ( S  +  t )  x.  1 ) )
94 1red 9655 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  RR+ )  ->  1  e.  RR )
95 ltdivmul 10477 . . . . . . . . . . . 12  |-  ( ( S  e.  RR  /\  1  e.  RR  /\  (
( S  +  t )  e.  RR  /\  0  <  ( S  +  t ) ) )  ->  ( ( S  /  ( S  +  t ) )  <  1  <->  S  <  ( ( S  +  t )  x.  1 ) ) )
9611, 94, 19, 61, 95syl112anc 1271 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  /  ( S  +  t ) )  <  1  <->  S  <  ( ( S  +  t )  x.  1 ) ) )
9793, 96mpbird 236 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  /  ( S  +  t ) )  <  1 )
98 halflt1 10828 . . . . . . . . . 10  |-  ( 1  /  2 )  <  1
99 breq1 4404 . . . . . . . . . . 11  |-  ( ( S  /  ( S  +  t ) )  =  if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  -> 
( ( S  / 
( S  +  t ) )  <  1  <->  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <  1 ) )
100 breq1 4404 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  =  if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  -> 
( ( 1  / 
2 )  <  1  <->  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <  1 ) )
10199, 100ifboth 3916 . . . . . . . . . 10  |-  ( ( ( S  /  ( S  +  t )
)  <  1  /\  ( 1  /  2
)  <  1 )  ->  if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  <  1 )
10297, 98, 101sylancl 667 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  if (
( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <  1 )
103 1re 9639 . . . . . . . . . . 11  |-  1  e.  RR
104103rexri 9690 . . . . . . . . . 10  |-  1  e.  RR*
105 elioo2 11674 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  ( 0 (,) 1 )  <->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  RR  /\  0  <  if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  /\  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <  1 ) ) )
10622, 104, 105mp2an 677 . . . . . . . . 9  |-  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  ( 0 (,) 1 )  <->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  RR  /\  0  <  if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  /\  if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  <  1 ) )
10768, 91, 102, 106syl3anbrc 1191 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  if (
( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  e.  ( 0 (,) 1 ) )
1088adantr 467 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  P  oR  <_  G )
109 fveq2 5863 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( P `  y )  =  ( P `  x ) )
110109oveq2d 6304 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( P `  y ) )  =  ( if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  x.  ( P `  x
) ) )
111 fveq2 5863 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( F `  n
) `  y )  =  ( ( F `
 n ) `  x ) )
112110, 111breq12d 4414 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( if ( ( 1  /  2 )  <_  ( S  / 
( S  +  t ) ) ,  ( S  /  ( S  +  t ) ) ,  ( 1  / 
2 ) )  x.  ( P `  y
) )  <_  (
( F `  n
) `  y )  <->  ( if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  x.  ( P `  x )
)  <_  ( ( F `  n ) `  x ) ) )
113112cbvrabv 3043 . . . . . . . . 9  |-  { y  e.  RR  |  ( if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  x.  ( P `  y )
)  <_  ( ( F `  n ) `  y ) }  =  { x  e.  RR  |  ( if ( ( 1  /  2
)  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( P `  x ) )  <_ 
( ( F `  n ) `  x
) }
114113mpteq2i 4485 . . . . . . . 8  |-  ( n  e.  NN  |->  { y  e.  RR  |  ( if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  x.  ( P `  y )
)  <_  ( ( F `  n ) `  y ) } )  =  ( n  e.  NN  |->  { x  e.  RR  |  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( P `  x ) )  <_ 
( ( F `  n ) `  x
) } )
1151, 82, 83, 84, 85, 6, 107, 13, 108, 11, 114itg2monolem1 22701 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( if ( ( 1  / 
2 )  <_  ( S  /  ( S  +  t ) ) ,  ( S  /  ( S  +  t )
) ,  ( 1  /  2 ) )  x.  ( S.1 `  P
) )  <_  S
)
11665, 69, 11, 81, 115letrd 9789 . . . . . 6  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  /  ( S  +  t ) )  x.  ( S.1 `  P
) )  <_  S
)
11763, 116eqbrtrd 4422 . . . . 5  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S  x.  ( S.1 `  P ) )  / 
( S  +  t ) )  <_  S
)
11811, 15remulcld 9668 . . . . . 6  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  x.  ( S.1 `  P
) )  e.  RR )
119 ledivmul2 10481 . . . . . 6  |-  ( ( ( S  x.  ( S.1 `  P ) )  e.  RR  /\  S  e.  RR  /\  ( ( S  +  t )  e.  RR  /\  0  <  ( S  +  t ) ) )  -> 
( ( ( S  x.  ( S.1 `  P
) )  /  ( S  +  t )
)  <_  S  <->  ( S  x.  ( S.1 `  P
) )  <_  ( S  x.  ( S  +  t ) ) ) )
120118, 11, 19, 61, 119syl112anc 1271 . . . . 5  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( (
( S  x.  ( S.1 `  P ) )  /  ( S  +  t ) )  <_  S 
<->  ( S  x.  ( S.1 `  P ) )  <_  ( S  x.  ( S  +  t
) ) ) )
121117, 120mpbid 214 . . . 4  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S  x.  ( S.1 `  P
) )  <_  ( S  x.  ( S  +  t ) ) )
12268, 15, 91, 78mulgt0d 9787 . . . . . 6  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  ( if ( ( 1  /  2 )  <_ 
( S  /  ( S  +  t )
) ,  ( S  /  ( S  +  t ) ) ,  ( 1  /  2
) )  x.  ( S.1 `  P ) ) )
12321, 69, 11, 122, 115ltletrd 9792 . . . . 5  |-  ( (
ph  /\  t  e.  RR+ )  ->  0  <  S )
124 lemul2 10455 . . . . 5  |-  ( ( ( S.1 `  P
)  e.  RR  /\  ( S  +  t
)  e.  RR  /\  ( S  e.  RR  /\  0  <  S ) )  ->  ( ( S.1 `  P )  <_ 
( S  +  t )  <->  ( S  x.  ( S.1 `  P ) )  <_  ( S  x.  ( S  +  t ) ) ) )
12515, 19, 11, 123, 124syl112anc 1271 . . . 4  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( ( S.1 `  P )  <_ 
( S  +  t )  <->  ( S  x.  ( S.1 `  P ) )  <_  ( S  x.  ( S  +  t ) ) ) )
126121, 125mpbird 236 . . 3  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( S.1 `  P )  <_  ( S  +  t )
)
127126ralrimiva 2801 . 2  |-  ( ph  ->  A. t  e.  RR+  ( S.1 `  P )  <_  ( S  +  t ) )
128 alrple 11496 . . 3  |-  ( ( ( S.1 `  P
)  e.  RR  /\  S  e.  RR )  ->  ( ( S.1 `  P
)  <_  S  <->  A. t  e.  RR+  ( S.1 `  P
)  <_  ( S  +  t ) ) )
12972, 10, 128syl2anc 666 . 2  |-  ( ph  ->  ( ( S.1 `  P
)  <_  S  <->  A. t  e.  RR+  ( S.1 `  P
)  <_  ( S  +  t ) ) )
130127, 129mpbird 236 1  |-  ( ph  ->  ( S.1 `  P
)  <_  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737   {crab 2740    C_ wss 3403   ifcif 3880   class class class wbr 4401    |-> cmpt 4460   dom cdm 4833   ran crn 4834    Fn wfn 5576   -->wf 5577   ` cfv 5581  (class class class)co 6288    oRcofr 6527   supcsup 7951   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541   +oocpnf 9669   RR*cxr 9671    < clt 9672    <_ cle 9673    / cdiv 10266   NNcn 10606   2c2 10656   RR+crp 11299   (,)cioo 11632   [,)cico 11634   [,]cicc 11635  MblFncmbf 22565   S.1citg1 22566   S.2citg2 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cc 8862  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-ofr 6529  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-omul 7184  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-acn 8373  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ioc 11637  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-rlim 13546  df-sum 13746  df-rest 15314  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-top 19914  df-bases 19915  df-topon 19916  df-cmp 20395  df-ovol 22409  df-vol 22411  df-mbf 22570  df-itg1 22571  df-itg2 22572
This theorem is referenced by:  itg2mono  22704
  Copyright terms: Public domain W3C validator