Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Visualization version   GIF version

Theorem iblabsnclem 32643
Description: Lemma for iblabsnc 32644; cf. iblabslem 23400. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnclem.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabsnclem.2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabsnclem.3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabsnclem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnclem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabsnclem.2 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabsnclem.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 23363 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 221 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1066 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 23211 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 23106 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 23115 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
123recnd 9947 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1312abscld 14023 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
14 0re 9919 . . . . 5 0 ∈ ℝ
15 ifcl 4080 . . . . 5 (((abs‘(𝐹𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
1613, 14, 15sylancl 693 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 3695 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4045 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 iftrue 4042 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
2221mpteq2ia 4668 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
23 eqid 2610 . . . . . . 7 (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2413, 23fmptd 6292 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))):𝐴⟶ℝ)
2513adantlr 747 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
2625biantrurd 528 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
273adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
28 simplr 788 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
2927, 28absled 14017 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3029notbid 307 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (¬ (abs‘(𝐹𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3128, 25ltnled 10063 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ¬ (abs‘(𝐹𝐵)) ≤ 𝑦))
32 renegcl 10223 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3332rexrd 9968 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ*)
3433ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
35 elioomnf 12139 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3634, 35syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3727biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3828renegcld 10336 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
3927, 38ltnled 10063 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
4036, 37, 393bitr2d 295 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
41 rexr 9964 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4241ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
43 elioopnf 12138 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4442, 43syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4527biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4628, 27ltnled 10063 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4744, 45, 463bitr2d 295 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4840, 47orbi12d 742 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦)))
49 ianor 508 . . . . . . . . . . . 12 (¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦))
5048, 49syl6bbr 277 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
5130, 31, 503bitr4rd 300 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹𝐵))))
52 elioopnf 12138 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5342, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5426, 51, 533bitr4rd 300 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))))
5554rabbidva 3163 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)} = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))})
5623mptpreima 5545 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)}
57 eqid 2610 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
5857mptpreima 5545 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)}
5957mptpreima 5545 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}
6058, 59uneq12i 3727 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)})
61 unrab 3857 . . . . . . . . 9 ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6260, 61eqtri 2632 . . . . . . . 8 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6355, 56, 623eqtr4g 2669 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))))
64 iblmbf 23340 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
652, 64syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
663, 57fmptd 6292 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ)
67 mbfima 23205 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol)
68 mbfima 23205 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol)
69 unmbl 23112 . . . . . . . . . 10 ((((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7067, 68, 69syl2anc 691 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7165, 66, 70syl2anc 691 . . . . . . . 8 (𝜑 → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7271adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7363, 72eqeltrd 2688 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) ∈ dom vol)
74 elioomnf 12139 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7542, 74syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7625biantrurd 528 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7727, 28absltd 14016 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7875, 76, 773bitr2d 295 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7927biantrurd 528 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
8078, 79bitrd 267 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
81 3anass 1035 . . . . . . . . . . 11 (((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8280, 81syl6bbr 277 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
83 elioo2 12087 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8433, 41, 83syl2anc 691 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8584ad2antlr 759 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8682, 85bitr4d 270 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹𝐵) ∈ (-𝑦(,)𝑦)))
8786rabbidva 3163 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)} = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)})
8823mptpreima 5545 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)}
8957mptpreima 5545 . . . . . . . 8 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)}
9087, 88, 893eqtr4g 2669 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)))
91 mbfima 23205 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9265, 66, 91syl2anc 691 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9490, 93eqeltrd 2688 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) ∈ dom vol)
9524, 7, 73, 94ismbf2d 23214 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) ∈ MblFn)
9622, 95syl5eqel 2692 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
979, 11, 16, 20, 96mbfss 23219 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
981, 97syl5eqel 2692 . 2 (𝜑𝐺 ∈ MblFn)
99 reex 9906 . . . . . . . . 9 ℝ ∈ V
10099a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
101 ifan 4084 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
102 ifcl 4080 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
1033, 14, 102sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
104 max1 11890 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
10514, 3, 104sylancr 694 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
106 elrege0 12149 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
107103, 105, 106sylanbrc 695 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
108 0e0icopnf 12153 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
109108a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
110107, 109ifclda 4070 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
111101, 110syl5eqel 2692 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
112111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
113 ifan 4084 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
1143renegcld 10336 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
115 ifcl 4080 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
116114, 14, 115sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
117 max1 11890 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
11814, 114, 117sylancr 694 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
119 elrege0 12149 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
120116, 118, 119sylanbrc 695 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
121120, 109ifclda 4070 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
122113, 121syl5eqel 2692 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
123122adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
124 eqidd 2611 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
125 eqidd 2611 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
126100, 112, 123, 124, 125offval2 6812 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
127101, 113oveq12i 6561 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
128 max0add 13898 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
1293, 128syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
130 iftrue 4042 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
131130adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
132 iftrue 4042 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
134131, 133oveq12d 6567 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
13521adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
136129, 134, 1353eqtr4d 2654 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
137136ex 449 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
138 00id 10090 . . . . . . . . . . 11 (0 + 0) = 0
139 iffalse 4045 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
140 iffalse 4045 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
141139, 140oveq12d 6567 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
142138, 141, 193eqtr4a 2670 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
143137, 142pm2.61d1 170 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
144127, 143syl5eq 2656 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
145144mpteq2dv 4673 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
146126, 145eqtrd 2644 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
147146, 1syl6reqr 2663 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
148147fveq2d 6107 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
149111adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
150101, 139syl5eq 2656 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
15118, 150syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
152 ibar 524 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
153152ifbid 4058 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
154153mpteq2ia 4668 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
1553, 6mbfpos 23224 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
156154, 155syl5eqelr 2693 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1579, 11, 149, 151, 156mbfss 23219 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
158 eqid 2610 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
159112, 158fmptd 6292 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1605simp2d 1067 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
161 eqid 2610 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
162123, 161fmptd 6292 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1635simp3d 1068 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
164157, 159, 160, 162, 163itg2addnc 32634 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
165148, 164eqtrd 2644 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
166160, 163readdcld 9948 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
167165, 166eqeltrd 2688 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
16898, 167jca 553 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  -cneg 10146  (,)cioo 12046  [,)cico 12048  abscabs 13822  volcvol 23039  MblFncmbf 23189  2citg2 23191  𝐿1cibl 23192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-0p 23243
This theorem is referenced by:  iblabsnc  32644  iblmulc2nc  32645
  Copyright terms: Public domain W3C validator