Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Unicode version

Theorem iblabsnclem 28398
Description: Lemma for iblabsnc 28399; cf. iblabslem 21274. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabsnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
iblabsnclem.1  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
iblabsnclem.2  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
iblabsnclem.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
Assertion
Ref Expression
iblabsnclem  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)    V( x)

Proof of Theorem iblabsnclem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
2 iblabsnclem.2 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
3 iblabsnclem.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
43iblrelem 21237 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) ) )
52, 4mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) )
65simp1d 1000 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
76, 3mbfdm2 21085 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
8 mblss 20983 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
97, 8syl 16 . . . 4  |-  ( ph  ->  A  C_  RR )
10 rembl 20991 . . . . 5  |-  RR  e.  dom  vol
1110a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
123recnd 9404 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  CC )
1312abscld 12914 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
14 0re 9378 . . . . 5  |-  0  e.  RR
15 ifcl 3824 . . . . 5  |-  ( ( ( abs `  ( F `  B )
)  e.  RR  /\  0  e.  RR )  ->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 )  e.  RR )
1613, 14, 15sylancl 662 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  e.  RR )
17 eldifn 3472 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
1817adantl 466 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
19 iffalse 3792 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  0 )
2018, 19syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  ( F `  B )
) ,  0 )  =  0 )
21 iftrue 3790 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
2221mpteq2ia 4367 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )
23 eqid 2437 . . . . . . 7  |-  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B )
) )
2413, 23fmptd 5860 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  ( F `  B )
) ) : A --> RR )
2513adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
2625biantrurd 508 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( abs `  ( F `  B
) )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  y  < 
( abs `  ( F `  B )
) ) ) )
273adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
28 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  y  e.  RR )
2927, 28absled 12909 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <_  y  <->  ( -u y  <_  ( F `  B
)  /\  ( F `  B )  <_  y
) ) )
3029notbid 294 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( -.  ( abs `  ( F `  B )
)  <_  y  <->  -.  ( -u y  <_  ( F `  B )  /\  ( F `  B )  <_  y ) ) )
3128, 25ltnled 9513 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( abs `  ( F `  B
) )  <->  -.  ( abs `  ( F `  B ) )  <_ 
y ) )
32 renegcl 9664 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  -u y  e.  RR )
3332rexrd 9425 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR  ->  -u y  e.  RR* )
3433ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  -u y  e.  RR* )
35 elioomnf 11376 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR*  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3634, 35syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3727biantrurd 508 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  <  -u y  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3828renegcld 9767 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  -u y  e.  RR )
3927, 38ltnled 9513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  <  -u y  <->  -.  -u y  <_  ( F `  B
) ) )
4036, 37, 393bitr2d 281 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  -.  -u y  <_  ( F `  B
) ) )
41 rexr 9421 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR  ->  y  e.  RR* )
4241ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  y  e.  RR* )
43 elioopnf 11375 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR*  ->  ( ( F `  B )  e.  ( y (,) +oo )  <->  ( ( F `
 B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4442, 43syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( y (,) +oo )  <->  ( ( F `  B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4527biantrurd 508 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( F `  B )  <->  ( ( F `  B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4628, 27ltnled 9513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( F `  B )  <->  -.  ( F `  B )  <_  y ) )
4744, 45, 463bitr2d 281 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( y (,) +oo )  <->  -.  ( F `  B )  <_  y ) )
4840, 47orbi12d 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  ( -.  -u y  <_  ( F `  B )  \/  -.  ( F `  B )  <_  y ) ) )
49 ianor 488 . . . . . . . . . . . 12  |-  ( -.  ( -u y  <_ 
( F `  B
)  /\  ( F `  B )  <_  y
)  <->  ( -.  -u y  <_  ( F `  B
)  \/  -.  ( F `  B )  <_  y ) )
5048, 49syl6bbr 263 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  -.  ( -u y  <_  ( F `  B )  /\  ( F `  B )  <_  y ) ) )
5130, 31, 503bitr4rd 286 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  y  <  ( abs `  ( F `
 B ) ) ) )
52 elioopnf 11375 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( ( abs `  ( F `
 B ) )  e.  ( y (,) +oo )  <->  ( ( abs `  ( F `  B
) )  e.  RR  /\  y  <  ( abs `  ( F `  B
) ) ) ) )
5342, 52syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( y (,) +oo )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  y  < 
( abs `  ( F `  B )
) ) ) )
5426, 51, 533bitr4rd 286 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( y (,) +oo )  <->  ( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) ) )
5554rabbidva 2957 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( y (,) +oo ) }  =  {
x  e.  A  | 
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) } )
5623mptpreima 5324 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  =  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( y (,) +oo ) }
57 eqid 2437 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
5857mptpreima 5324 . . . . . . . . . 10  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  =  { x  e.  A  |  ( F `
 B )  e.  ( -oo (,) -u y
) }
5957mptpreima 5324 . . . . . . . . . 10  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " (
y (,) +oo )
)  =  { x  e.  A  |  ( F `  B )  e.  ( y (,) +oo ) }
6058, 59uneq12i 3501 . . . . . . . . 9  |-  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  =  ( { x  e.  A  |  ( F `
 B )  e.  ( -oo (,) -u y
) }  u.  {
x  e.  A  | 
( F `  B
)  e.  ( y (,) +oo ) } )
61 unrab 3614 . . . . . . . . 9  |-  ( { x  e.  A  | 
( F `  B
)  e.  ( -oo (,) -u y ) }  u.  { x  e.  A  |  ( F `
 B )  e.  ( y (,) +oo ) } )  =  {
x  e.  A  | 
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) }
6260, 61eqtri 2457 . . . . . . . 8  |-  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  =  { x  e.  A  |  ( ( F `
 B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) }
6355, 56, 623eqtr4g 2494 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  =  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) ) )
64 iblmbf 21214 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( F `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
652, 64syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
663, 57fmptd 5860 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> RR )
67 mbfima 21079 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -oo (,) -u y ) )  e.  dom  vol )
68 mbfima 21079 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) )  e.  dom  vol )
69 unmbl 20988 . . . . . . . . . 10  |-  ( ( ( `' ( x  e.  A  |->  ( F `
 B ) )
" ( -oo (,) -u y ) )  e. 
dom  vol  /\  ( `' ( x  e.  A  |->  ( F `  B
) ) " (
y (,) +oo )
)  e.  dom  vol )  ->  ( ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7067, 68, 69syl2anc 661 . . . . . . . . 9  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7165, 66, 70syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7271adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  e. 
dom  vol )
7363, 72eqeltrd 2511 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  e.  dom  vol )
74 elioomnf 11376 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  ( ( abs `  ( F `
 B ) )  e.  ( -oo (,) y )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7542, 74syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7625biantrurd 508 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <  y  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7727, 28absltd 12908 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <  y  <->  ( -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
7875, 76, 773bitr2d 281 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
7927biantrurd 508 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( -u y  <  ( F `  B )  /\  ( F `  B
)  <  y )  <->  ( ( F `  B
)  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B
)  <  y )
) ) )
8078, 79bitrd 253 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( F `  B )  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B )  <  y ) ) ) )
81 3anass 969 . . . . . . . . . . 11  |-  ( ( ( F `  B
)  e.  RR  /\  -u y  <  ( F `
 B )  /\  ( F `  B )  <  y )  <->  ( ( F `  B )  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B )  <  y ) ) )
8280, 81syl6bbr 263 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
83 elioo2 11333 . . . . . . . . . . . 12  |-  ( (
-u y  e.  RR*  /\  y  e.  RR* )  ->  ( ( F `  B )  e.  (
-u y (,) y
)  <->  ( ( F `
 B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8433, 41, 83syl2anc 661 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( F `  B
)  e.  ( -u y (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8584ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -u y (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8682, 85bitr4d 256 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( F `  B )  e.  (
-u y (,) y
) ) )
8786rabbidva 2957 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( -oo (,) y
) }  =  {
x  e.  A  | 
( F `  B
)  e.  ( -u y (,) y ) } )
8823mptpreima 5324 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  =  { x  e.  A  |  ( abs `  ( F `  B
) )  e.  ( -oo (,) y ) }
8957mptpreima 5324 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -u y (,) y ) )  =  { x  e.  A  |  ( F `  B )  e.  ( -u y (,) y ) }
9087, 88, 893eqtr4g 2494 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  =  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -u y (,) y ) ) )
91 mbfima 21079 . . . . . . . . 9  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -u y (,) y ) )  e.  dom  vol )
9265, 66, 91syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( `' ( x  e.  A  |->  ( F `
 B ) )
" ( -u y (,) y ) )  e. 
dom  vol )
9392adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -u y (,) y ) )  e.  dom  vol )
9490, 93eqeltrd 2511 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  e.  dom  vol )
9524, 7, 73, 94ismbf2d 21088 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  ( F `  B )
) )  e. MblFn )
9622, 95syl5eqel 2521 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  e. MblFn )
979, 11, 16, 20, 96mbfss 21093 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )  e. MblFn )
981, 97syl5eqel 2521 . 2  |-  ( ph  ->  G  e. MblFn )
99 reex 9365 . . . . . . . . 9  |-  RR  e.  _V
10099a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
101 ifan 3828 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )
102 ifcl 3824 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 )  e.  RR )
1033, 14, 102sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR )
104 max1 11149 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( F `  B )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
10514, 3, 104sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )
106 elrege0 11384 . . . . . . . . . . . 12  |-  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ) )
107103, 105, 106sylanbrc 664 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
108 0e0icopnf 11387 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,) +oo )
109108a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
110107, 109ifclda 3814 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo )
)
111101, 110syl5eqel 2521 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
112111adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
113 ifan 3828 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )
1143renegcld 9767 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  B )  e.  RR )
115 ifcl 3824 . . . . . . . . . . . . 13  |-  ( (
-u ( F `  B )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
116114, 14, 115sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
117 max1 11149 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u ( F `  B
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
11814, 114, 117sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )
119 elrege0 11384 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ) )
120116, 118, 119sylanbrc 664 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
121120, 109ifclda 3814 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
122113, 121syl5eqel 2521 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
123122adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
124 eqidd 2438 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )
125 eqidd 2438 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )
126100, 112, 123, 124, 125offval2 6331 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) ) )
127101, 113oveq12i 6098 . . . . . . . . 9  |-  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 ) )
128 max0add 12791 . . . . . . . . . . . . 13  |-  ( ( F `  B )  e.  RR  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
1293, 128syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
130 iftrue 3790 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
131130adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
132 iftrue 3790 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
133132adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
134131, 133oveq12d 6104 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ) )
13521adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
136129, 134, 1353eqtr4d 2479 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
137136ex 434 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
138 00id 9536 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
139 iffalse 3792 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  0 )
140 iffalse 3792 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  0 )
141139, 140oveq12d 6104 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) )
142138, 141, 193eqtr4a 2495 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
143137, 142pm2.61d1 159 . . . . . . . . 9  |-  ( ph  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
144127, 143syl5eq 2481 . . . . . . . 8  |-  ( ph  ->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 )  +  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
145144mpteq2dv 4372 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) ) )
146126, 145eqtrd 2469 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
147146, 1syl6reqr 2488 . . . . 5  |-  ( ph  ->  G  =  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )
148147fveq2d 5688 . . . 4  |-  ( ph  ->  ( S.2 `  G
)  =  ( S.2 `  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
149111adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
150101, 139syl5eq 2481 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  =  0 )
15118, 150syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  0 )
152 ibar 504 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  ( F `  B )  <->  ( x  e.  A  /\  0  <_  ( F `  B
) ) ) )
153152ifbid 3804 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )
154153mpteq2ia 4367 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )
1553, 6mbfpos 21098 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )  e. MblFn
)
156154, 155syl5eqelr 2522 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
1579, 11, 149, 151, 156mbfss 21093 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
158 eqid 2437 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )
159112, 158fmptd 5860 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1605simp2d 1001 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR )
161 eqid 2437 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )
162123, 161fmptd 5860 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1635simp3d 1002 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR )
164157, 159, 160, 162, 163itg2addnc 28389 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
165148, 164eqtrd 2469 . . 3  |-  ( ph  ->  ( S.2 `  G
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
166160, 163readdcld 9405 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  e.  RR )
167165, 166eqeltrd 2511 . 2  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
16898, 167jca 532 1  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2713   _Vcvv 2966    \ cdif 3318    u. cun 3319    C_ wss 3321   ifcif 3784   class class class wbr 4285    e. cmpt 4343   `'ccnv 4831   dom cdm 4832   "cima 4835   -->wf 5407   ` cfv 5411  (class class class)co 6086    oFcof 6313   RRcr 9273   0cc0 9274    + caddc 9277   +oocpnf 9407   -oocmnf 9408   RR*cxr 9409    < clt 9410    <_ cle 9411   -ucneg 9588   (,)cioo 11292   [,)cico 11294   abscabs 12715   volcvol 20916  MblFncmbf 21063   S.2citg2 21065   L^1cibl 21066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-disj 4256  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-se 4672  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-isom 5420  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-ofr 6316  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-rest 14353  df-topgen 14374  df-psmet 17778  df-xmet 17779  df-met 17780  df-bl 17781  df-mopn 17782  df-top 18472  df-bases 18474  df-topon 18475  df-cmp 18959  df-ovol 20917  df-vol 20918  df-mbf 21068  df-itg1 21069  df-itg2 21070  df-ibl 21071  df-0p 21117
This theorem is referenced by:  iblabsnc  28399  iblmulc2nc  28400
  Copyright terms: Public domain W3C validator