Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Unicode version

Theorem iblabsnclem 31969
Description: Lemma for iblabsnc 31970; cf. iblabslem 22783. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabsnc.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
iblabsnclem.1  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
iblabsnclem.2  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
iblabsnclem.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
Assertion
Ref Expression
iblabsnclem  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)    V( x)

Proof of Theorem iblabsnclem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
2 iblabsnclem.2 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L^1 )
3 iblabsnclem.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
43iblrelem 22746 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  L^1  <->  ( (
x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) ) )
52, 4mpbid 213 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) )
65simp1d 1017 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
76, 3mbfdm2 22592 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
8 mblss 22483 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
97, 8syl 17 . . . 4  |-  ( ph  ->  A  C_  RR )
10 rembl 22492 . . . . 5  |-  RR  e.  dom  vol
1110a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
123recnd 9676 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  CC )
1312abscld 13497 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
14 0re 9650 . . . . 5  |-  0  e.  RR
15 ifcl 3953 . . . . 5  |-  ( ( ( abs `  ( F `  B )
)  e.  RR  /\  0  e.  RR )  ->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 )  e.  RR )
1613, 14, 15sylancl 666 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  e.  RR )
17 eldifn 3588 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
1817adantl 467 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
19 iffalse 3920 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  0 )
2018, 19syl 17 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  ( F `  B )
) ,  0 )  =  0 )
21 iftrue 3917 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
2221mpteq2ia 4506 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )
23 eqid 2422 . . . . . . 7  |-  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B )
) )
2413, 23fmptd 6061 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  ( F `  B )
) ) : A --> RR )
2513adantlr 719 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
2625biantrurd 510 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( abs `  ( F `  B
) )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  y  < 
( abs `  ( F `  B )
) ) ) )
273adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
28 simplr 760 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  y  e.  RR )
2927, 28absled 13492 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <_  y  <->  ( -u y  <_  ( F `  B
)  /\  ( F `  B )  <_  y
) ) )
3029notbid 295 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( -.  ( abs `  ( F `  B )
)  <_  y  <->  -.  ( -u y  <_  ( F `  B )  /\  ( F `  B )  <_  y ) ) )
3128, 25ltnled 9789 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( abs `  ( F `  B
) )  <->  -.  ( abs `  ( F `  B ) )  <_ 
y ) )
32 renegcl 9944 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  -u y  e.  RR )
3332rexrd 9697 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR  ->  -u y  e.  RR* )
3433ad2antlr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  -u y  e.  RR* )
35 elioomnf 11736 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR*  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3634, 35syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3727biantrurd 510 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  <  -u y  <->  ( ( F `  B )  e.  RR  /\  ( F `
 B )  <  -u y ) ) )
3828renegcld 10053 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  -u y  e.  RR )
3927, 38ltnled 9789 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  <  -u y  <->  -.  -u y  <_  ( F `  B
) ) )
4036, 37, 393bitr2d 284 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -oo (,) -u y )  <->  -.  -u y  <_  ( F `  B
) ) )
41 rexr 9693 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR  ->  y  e.  RR* )
4241ad2antlr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  y  e.  RR* )
43 elioopnf 11735 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR*  ->  ( ( F `  B )  e.  ( y (,) +oo )  <->  ( ( F `
 B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4442, 43syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( y (,) +oo )  <->  ( ( F `  B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4527biantrurd 510 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( F `  B )  <->  ( ( F `  B )  e.  RR  /\  y  < 
( F `  B
) ) ) )
4628, 27ltnled 9789 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
y  <  ( F `  B )  <->  -.  ( F `  B )  <_  y ) )
4744, 45, 463bitr2d 284 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( y (,) +oo )  <->  -.  ( F `  B )  <_  y ) )
4840, 47orbi12d 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  ( -.  -u y  <_  ( F `  B )  \/  -.  ( F `  B )  <_  y ) ) )
49 ianor 490 . . . . . . . . . . . 12  |-  ( -.  ( -u y  <_ 
( F `  B
)  /\  ( F `  B )  <_  y
)  <->  ( -.  -u y  <_  ( F `  B
)  \/  -.  ( F `  B )  <_  y ) )
5048, 49syl6bbr 266 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  -.  ( -u y  <_  ( F `  B )  /\  ( F `  B )  <_  y ) ) )
5130, 31, 503bitr4rd 289 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) )  <->  y  <  ( abs `  ( F `
 B ) ) ) )
52 elioopnf 11735 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( ( abs `  ( F `
 B ) )  e.  ( y (,) +oo )  <->  ( ( abs `  ( F `  B
) )  e.  RR  /\  y  <  ( abs `  ( F `  B
) ) ) ) )
5342, 52syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( y (,) +oo )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  y  < 
( abs `  ( F `  B )
) ) ) )
5426, 51, 533bitr4rd 289 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( y (,) +oo )  <->  ( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) ) )
5554rabbidva 3070 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( y (,) +oo ) }  =  {
x  e.  A  | 
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) } )
5623mptpreima 5347 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  =  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( y (,) +oo ) }
57 eqid 2422 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
5857mptpreima 5347 . . . . . . . . . 10  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  =  { x  e.  A  |  ( F `
 B )  e.  ( -oo (,) -u y
) }
5957mptpreima 5347 . . . . . . . . . 10  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " (
y (,) +oo )
)  =  { x  e.  A  |  ( F `  B )  e.  ( y (,) +oo ) }
6058, 59uneq12i 3618 . . . . . . . . 9  |-  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  =  ( { x  e.  A  |  ( F `
 B )  e.  ( -oo (,) -u y
) }  u.  {
x  e.  A  | 
( F `  B
)  e.  ( y (,) +oo ) } )
61 unrab 3744 . . . . . . . . 9  |-  ( { x  e.  A  | 
( F `  B
)  e.  ( -oo (,) -u y ) }  u.  { x  e.  A  |  ( F `
 B )  e.  ( y (,) +oo ) } )  =  {
x  e.  A  | 
( ( F `  B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) }
6260, 61eqtri 2451 . . . . . . . 8  |-  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  =  { x  e.  A  |  ( ( F `
 B )  e.  ( -oo (,) -u y
)  \/  ( F `
 B )  e.  ( y (,) +oo ) ) }
6355, 56, 623eqtr4g 2488 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  =  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) ) )
64 iblmbf 22723 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( F `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
652, 64syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
663, 57fmptd 6061 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> RR )
67 mbfima 22586 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -oo (,) -u y ) )  e.  dom  vol )
68 mbfima 22586 . . . . . . . . . 10  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) )  e.  dom  vol )
69 unmbl 22489 . . . . . . . . . 10  |-  ( ( ( `' ( x  e.  A  |->  ( F `
 B ) )
" ( -oo (,) -u y ) )  e. 
dom  vol  /\  ( `' ( x  e.  A  |->  ( F `  B
) ) " (
y (,) +oo )
)  e.  dom  vol )  ->  ( ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7067, 68, 69syl2anc 665 . . . . . . . . 9  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7165, 66, 70syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -oo (,) -u y ) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( y (,) +oo ) ) )  e.  dom  vol )
7271adantr 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( `' ( x  e.  A  |->  ( F `  B ) ) "
( -oo (,) -u y
) )  u.  ( `' ( x  e.  A  |->  ( F `  B ) ) "
( y (,) +oo ) ) )  e. 
dom  vol )
7363, 72eqeltrd 2507 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " (
y (,) +oo )
)  e.  dom  vol )
74 elioomnf 11736 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  ( ( abs `  ( F `
 B ) )  e.  ( -oo (,) y )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7542, 74syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7625biantrurd 510 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <  y  <->  ( ( abs `  ( F `  B ) )  e.  RR  /\  ( abs `  ( F `  B
) )  <  y
) ) )
7727, 28absltd 13491 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  <  y  <->  ( -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
7875, 76, 773bitr2d 284 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
7927biantrurd 510 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( -u y  <  ( F `  B )  /\  ( F `  B
)  <  y )  <->  ( ( F `  B
)  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B
)  <  y )
) ) )
8078, 79bitrd 256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( F `  B )  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B )  <  y ) ) ) )
81 3anass 986 . . . . . . . . . . 11  |-  ( ( ( F `  B
)  e.  RR  /\  -u y  <  ( F `
 B )  /\  ( F `  B )  <  y )  <->  ( ( F `  B )  e.  RR  /\  ( -u y  <  ( F `  B )  /\  ( F `  B )  <  y ) ) )
8280, 81syl6bbr 266 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
83 elioo2 11684 . . . . . . . . . . . 12  |-  ( (
-u y  e.  RR*  /\  y  e.  RR* )  ->  ( ( F `  B )  e.  (
-u y (,) y
)  <->  ( ( F `
 B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8433, 41, 83syl2anc 665 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( F `  B
)  e.  ( -u y (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8584ad2antlr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( F `  B
)  e.  ( -u y (,) y )  <->  ( ( F `  B )  e.  RR  /\  -u y  <  ( F `  B
)  /\  ( F `  B )  <  y
) ) )
8682, 85bitr4d 259 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( abs `  ( F `  B )
)  e.  ( -oo (,) y )  <->  ( F `  B )  e.  (
-u y (,) y
) ) )
8786rabbidva 3070 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  { x  e.  A  |  ( abs `  ( F `  B ) )  e.  ( -oo (,) y
) }  =  {
x  e.  A  | 
( F `  B
)  e.  ( -u y (,) y ) } )
8823mptpreima 5347 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  =  { x  e.  A  |  ( abs `  ( F `  B
) )  e.  ( -oo (,) y ) }
8957mptpreima 5347 . . . . . . . 8  |-  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -u y (,) y ) )  =  { x  e.  A  |  ( F `  B )  e.  ( -u y (,) y ) }
9087, 88, 893eqtr4g 2488 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  =  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -u y (,) y ) ) )
91 mbfima 22586 . . . . . . . . 9  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  ( F `  B ) ) " ( -u y (,) y ) )  e.  dom  vol )
9265, 66, 91syl2anc 665 . . . . . . . 8  |-  ( ph  ->  ( `' ( x  e.  A  |->  ( F `
 B ) )
" ( -u y (,) y ) )  e. 
dom  vol )
9392adantr 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( F `  B
) ) " ( -u y (,) y ) )  e.  dom  vol )
9490, 93eqeltrd 2507 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  ( abs `  ( F `  B )
) ) " ( -oo (,) y ) )  e.  dom  vol )
9524, 7, 73, 94ismbf2d 22595 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  ( F `  B )
) )  e. MblFn )
9622, 95syl5eqel 2511 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  e. MblFn )
979, 11, 16, 20, 96mbfss 22600 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )  e. MblFn )
981, 97syl5eqel 2511 . 2  |-  ( ph  ->  G  e. MblFn )
99 reex 9637 . . . . . . . . 9  |-  RR  e.  _V
10099a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
101 ifan 3957 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )
102 ifcl 3953 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 )  e.  RR )
1033, 14, 102sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR )
104 max1 11487 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( F `  B )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
10514, 3, 104sylancr 667 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )
106 elrege0 11745 . . . . . . . . . . . 12  |-  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ) )
107103, 105, 106sylanbrc 668 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
108 0e0icopnf 11749 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,) +oo )
109108a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,) +oo ) )
110107, 109ifclda 3943 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo )
)
111101, 110syl5eqel 2511 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
112111adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
113 ifan 3957 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )
1143renegcld 10053 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  B )  e.  RR )
115 ifcl 3953 . . . . . . . . . . . . 13  |-  ( (
-u ( F `  B )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
116114, 14, 115sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
117 max1 11487 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u ( F `  B
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
11814, 114, 117sylancr 667 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )
119 elrege0 11745 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ) )
120116, 118, 119sylanbrc 668 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
121120, 109ifclda 3943 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) +oo ) )
122113, 121syl5eqel 2511 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
123122adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
124 eqidd 2423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )
125 eqidd 2423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )
126100, 112, 123, 124, 125offval2 6562 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) ) )
127101, 113oveq12i 6317 . . . . . . . . 9  |-  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 ) )
128 max0add 13373 . . . . . . . . . . . . 13  |-  ( ( F `  B )  e.  RR  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
1293, 128syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
130 iftrue 3917 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
131130adantl 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
132 iftrue 3917 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
133132adantl 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
134131, 133oveq12d 6323 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ) )
13521adantl 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
136129, 134, 1353eqtr4d 2473 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
137136ex 435 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
138 00id 9815 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
139 iffalse 3920 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  0 )
140 iffalse 3920 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  0 )
141139, 140oveq12d 6323 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) )
142138, 141, 193eqtr4a 2489 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
143137, 142pm2.61d1 162 . . . . . . . . 9  |-  ( ph  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
144127, 143syl5eq 2475 . . . . . . . 8  |-  ( ph  ->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 )  +  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
145144mpteq2dv 4511 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) ) )
146126, 145eqtrd 2463 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
147146, 1syl6reqr 2482 . . . . 5  |-  ( ph  ->  G  =  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )
148147fveq2d 5885 . . . 4  |-  ( ph  ->  ( S.2 `  G
)  =  ( S.2 `  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
149111adantr 466 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,) +oo ) )
150101, 139syl5eq 2475 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  =  0 )
15118, 150syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  0 )
152 ibar 506 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  ( F `  B )  <->  ( x  e.  A  /\  0  <_  ( F `  B
) ) ) )
153152ifbid 3933 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )
154153mpteq2ia 4506 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )
1553, 6mbfpos 22605 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )  e. MblFn
)
156154, 155syl5eqelr 2512 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
1579, 11, 149, 151, 156mbfss 22600 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
158 eqid 2422 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )
159112, 158fmptd 6061 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1605simp2d 1018 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR )
161 eqid 2422 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )
162123, 161fmptd 6061 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
1635simp3d 1019 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR )
164157, 159, 160, 162, 163itg2addnc 31960 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  oF  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
165148, 164eqtrd 2463 . . 3  |-  ( ph  ->  ( S.2 `  G
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
166160, 163readdcld 9677 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  e.  RR )
167165, 166eqeltrd 2507 . 2  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
16898, 167jca 534 1  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   {crab 2775   _Vcvv 3080    \ cdif 3433    u. cun 3434    C_ wss 3436   ifcif 3911   class class class wbr 4423    |-> cmpt 4482   `'ccnv 4852   dom cdm 4853   "cima 4856   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543   RRcr 9545   0cc0 9546    + caddc 9549   +oocpnf 9679   -oocmnf 9680   RR*cxr 9681    < clt 9682    <_ cle 9683   -ucneg 9868   (,)cioo 11642   [,)cico 11644   abscabs 13297   volcvol 22413  MblFncmbf 22570   S.2citg2 22572   L^1cibl 22573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-disj 4395  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fi 7934  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12034  df-seq 12220  df-exp 12279  df-hash 12522  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13551  df-sum 13752  df-rest 15320  df-topgen 15341  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-top 19919  df-bases 19920  df-topon 19921  df-cmp 20400  df-ovol 22414  df-vol 22416  df-mbf 22575  df-itg1 22576  df-itg2 22577  df-ibl 22578  df-0p 22626
This theorem is referenced by:  iblabsnc  31970  iblmulc2nc  31971
  Copyright terms: Public domain W3C validator