MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 18130
Description: Lemma 2 for gsumval3 18131. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6014 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 12634 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
5 gsumval3.a . . . . . 6 (𝜑𝐴𝑉)
6 fex2 7014 . . . . . 6 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
73, 4, 5, 6syl3anc 1318 . . . . 5 (𝜑𝐻 ∈ V)
8 vex 3176 . . . . 5 𝑓 ∈ V
9 coexg 7010 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
107, 8, 9sylancl 693 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
1110ad2antrr 758 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
12 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
13 gsumval3.0 . . . . 5 0 = (0g𝐺)
14 gsumval3.p . . . . 5 + = (+g𝐺)
15 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
16 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
17 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
18 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
19 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
20 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
21 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2212, 13, 14, 15, 16, 5, 17, 18, 19, 1, 20, 21gsumval3lem1 18129 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
23 resexg 5362 . . . . . . . . 9 (𝐻 ∈ V → (𝐻𝑊) ∈ V)
247, 23syl 17 . . . . . . . 8 (𝜑 → (𝐻𝑊) ∈ V)
2524ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) ∈ V)
261ad2antrr 758 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
27 suppssdm 7195 . . . . . . . . . . . 12 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2821, 27eqsstri 3598 . . . . . . . . . . 11 𝑊 ⊆ dom (𝐹𝐻)
29 fco 5971 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
3017, 3, 29syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
31 fdm 5964 . . . . . . . . . . . 12 ((𝐹𝐻):(1...𝑀)⟶𝐵 → dom (𝐹𝐻) = (1...𝑀))
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝐹𝐻) = (1...𝑀))
3328, 32syl5sseq 3616 . . . . . . . . . 10 (𝜑𝑊 ⊆ (1...𝑀))
3433ad2antrr 758 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
35 f1ores 6064 . . . . . . . . 9 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3626, 34, 35syl2anc 691 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3721imaeq2i 5383 . . . . . . . . . . 11 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
38 fex 6394 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
3917, 5, 38syl2anc 691 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
40 ovex 6577 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
41 fex 6394 . . . . . . . . . . . . . . 15 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
423, 40, 41sylancl 693 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ V)
4339, 42jca 553 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
44 f1fun 6016 . . . . . . . . . . . . . . 15 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
451, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐻)
4645, 20jca 553 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
47 imacosupp 7222 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4843, 46, 47sylc 63 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4948adantr 480 . . . . . . . . . . 11 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5037, 49syl5eq 2656 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
5150adantr 480 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
52 f1oeq3 6042 . . . . . . . . 9 ((𝐻𝑊) = (𝐹 supp 0 ) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5351, 52syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5436, 53mpbid 221 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
55 f1oen3g 7857 . . . . . . 7 (((𝐻𝑊) ∈ V ∧ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )) → 𝑊 ≈ (𝐹 supp 0 ))
5625, 54, 55syl2anc 691 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ≈ (𝐹 supp 0 ))
57 fzfi 12633 . . . . . . . . 9 (1...𝑀) ∈ Fin
58 ssfi 8065 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
5957, 33, 58sylancr 694 . . . . . . . 8 (𝜑𝑊 ∈ Fin)
6059ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
61 f1f1orn 6061 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
621, 61syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
63 f1oen3g 7857 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
647, 62, 63syl2anc 691 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
65 enfi 8061 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6757, 66mpbii 222 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
68 ssfi 8065 . . . . . . . . 9 ((ran 𝐻 ∈ Fin ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐹 supp 0 ) ∈ Fin)
6967, 20, 68syl2anc 691 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7069ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
71 hashen 12997 . . . . . . 7 ((𝑊 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
7260, 70, 71syl2anc 691 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
7356, 72mpbird 246 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (#‘𝑊) = (#‘(𝐹 supp 0 )))
7473fveq2d 6107 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
7522, 74jca 553 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))))
76 f1oeq1 6040 . . . . 5 (𝑔 = (𝐻𝑓) → (𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
77 coeq2 5202 . . . . . . . 8 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
7877seqeq3d 12671 . . . . . . 7 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
7978fveq1d 6105 . . . . . 6 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
8079eqeq2d 2620 . . . . 5 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))))
8176, 80anbi12d 743 . . . 4 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))))
8281spcegv 3267 . . 3 ((𝐻𝑓) ∈ V → (((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))) → ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
8311, 75, 82sylc 63 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
8416ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
855ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐴𝑉)
8617ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
8718ad2antrr 758 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8821neeq1i 2846 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
89 supp0cosupp0 7221 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
9089necon3d 2803 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9139, 42, 90syl2anc 691 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9288, 91syl5bi 231 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9392imp 444 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
9493adantr 480 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
9520ad2antrr 758 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
96 frn 5966 . . . . . . . . . 10 (𝐻:(1...𝑀)⟶𝐴 → ran 𝐻𝐴)
973, 96syl 17 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
9897ad2antrr 758 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝐻𝐴)
9995, 98sstrd 3578 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
10012, 13, 14, 15, 84, 85, 86, 87, 70, 94, 99gsumval3eu 18128 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
101 iota1 5782 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
102100, 101syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
103 eqid 2610 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
104 simprl 790 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
10512, 13, 14, 15, 84, 85, 86, 87, 70, 94, 103, 104gsumval3a 18127 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
106105eqeq1d 2612 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
107102, 106bitr4d 270 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
108107alrimiv 1842 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
109 fvex 6113 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) ∈ V
110 eqeq1 2614 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
111110anbi2d 736 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
112111exbidv 1837 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
113 eqeq2 2621 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
114112, 113bibi12d 334 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))))
115109, 114spcv 3272 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
116108, 115syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
11783, 116mpbid 221 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wne 2780  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  cio 5766  Fun wfun 5798  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549   supp csupp 7182  cen 7838  Fincfn 7841  1c1 9816   < clt 9953  cn 10897  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cntz 17573
This theorem is referenced by:  gsumval3  18131
  Copyright terms: Public domain W3C validator