MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0cosupp0 Structured version   Visualization version   GIF version

Theorem supp0cosupp0 7221
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
supp0cosupp0 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))

Proof of Theorem supp0cosupp0
StepHypRef Expression
1 simpl 472 . . . . . . . 8 ((𝐹𝑉𝐺𝑊) → 𝐹𝑉)
21anim2i 591 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ 𝐹𝑉))
32ancomd 466 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹𝑉𝑍 ∈ V))
4 suppimacnv 7193 . . . . . 6 ((𝐹𝑉𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
53, 4syl 17 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
65eqeq1d 2612 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 “ (V ∖ {𝑍})) = ∅))
7 coexg 7010 . . . . . . . . 9 ((𝐹𝑉𝐺𝑊) → (𝐹𝐺) ∈ V)
87anim2i 591 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ (𝐹𝐺) ∈ V))
98ancomd 466 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
10 suppimacnv 7193 . . . . . . 7 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
119, 10syl 17 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
12 cnvco 5230 . . . . . . . . 9 (𝐹𝐺) = (𝐺𝐹)
1312imaeq1i 5382 . . . . . . . 8 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
14 imaco 5557 . . . . . . . 8 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
1513, 14eqtri 2632 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
16 imaeq2 5381 . . . . . . . 8 ((𝐹 “ (V ∖ {𝑍})) = ∅ → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) = (𝐺 “ ∅))
17 ima0 5400 . . . . . . . 8 (𝐺 “ ∅) = ∅
1816, 17syl6eq 2660 . . . . . . 7 ((𝐹 “ (V ∖ {𝑍})) = ∅ → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) = ∅)
1915, 18syl5eq 2656 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) = ∅ → ((𝐹𝐺) “ (V ∖ {𝑍})) = ∅)
2011, 19sylan9eq 2664 . . . . 5 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (𝐹 “ (V ∖ {𝑍})) = ∅) → ((𝐹𝐺) supp 𝑍) = ∅)
2120ex 449 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 “ (V ∖ {𝑍})) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
226, 21sylbid 229 . . 3 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
2322ex 449 . 2 (𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅)))
24 id 22 . . . . 5 𝑍 ∈ V → ¬ 𝑍 ∈ V)
2524intnand 953 . . . 4 𝑍 ∈ V → ¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
26 supp0prc 7185 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
2725, 26syl 17 . . 3 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = ∅)
28272a1d 26 . 2 𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅)))
2923, 28pm2.61i 175 1 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  c0 3874  {csn 4125  ccnv 5037  cima 5041  ccom 5042  (class class class)co 6549   supp csupp 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-supp 7183
This theorem is referenced by:  gsumval3lem2  18130
  Copyright terms: Public domain W3C validator