MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Visualization version   GIF version

Theorem gsumval3eu 18128
Description: The group sum as defined in gsumval3a 18127 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.s (𝜑𝑊𝐴)
Assertion
Ref Expression
gsumval3eu (𝜑 → ∃!𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3eu
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6 (𝜑𝑊 ≠ ∅)
21neneqd 2787 . . . . 5 (𝜑 → ¬ 𝑊 = ∅)
3 gsumval3a.t . . . . . . 7 (𝜑𝑊 ∈ Fin)
4 fz1f1o 14288 . . . . . . 7 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ((#‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)))
53, 4syl 17 . . . . . 6 (𝜑 → (𝑊 = ∅ ∨ ((#‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)))
65ord 391 . . . . 5 (𝜑 → (¬ 𝑊 = ∅ → ((#‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)))
72, 6mpd 15 . . . 4 (𝜑 → ((#‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊))
87simprd 478 . . 3 (𝜑 → ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
9 excom 2029 . . . 4 (∃𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑓𝑥(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))))
10 exancom 1774 . . . . . 6 (∃𝑥(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑥(𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊))
11 fvex 6113 . . . . . . 7 (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∈ V
12 biidd 251 . . . . . . 7 (𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) → (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑓:(1...(#‘𝑊))–1-1-onto𝑊))
1311, 12ceqsexv 3215 . . . . . 6 (∃𝑥(𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊) ↔ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
1410, 13bitri 263 . . . . 5 (∃𝑥(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
1514exbii 1764 . . . 4 (∃𝑓𝑥(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
169, 15bitri 263 . . 3 (∃𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑓 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
178, 16sylibr 223 . 2 (𝜑 → ∃𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))))
18 eeanv 2170 . . . 4 (∃𝑓𝑔((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) ↔ (∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))))
19 an4 861 . . . . . 6 (((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊) ∧ (𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) ↔ ((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))))
20 gsumval3.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
2120adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝐺 ∈ Mnd)
22 gsumval3.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
23 gsumval3.p . . . . . . . . . . . 12 + = (+g𝐺)
2422, 23mndcl 17124 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
25243expb 1258 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
2621, 25sylan 487 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
27 gsumval3.c . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2827adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2928sselda 3568 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ ran 𝐹) → 𝑥 ∈ (𝑍‘ran 𝐹))
3029adantrr 749 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → 𝑥 ∈ (𝑍‘ran 𝐹))
31 simprr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → 𝑦 ∈ ran 𝐹)
32 gsumval3.z . . . . . . . . . . 11 𝑍 = (Cntz‘𝐺)
3323, 32cntzi 17585 . . . . . . . . . 10 ((𝑥 ∈ (𝑍‘ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3430, 31, 33syl2anc 691 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3522, 23mndass 17125 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3621, 35sylan 487 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
377simpld 474 . . . . . . . . . . 11 (𝜑 → (#‘𝑊) ∈ ℕ)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → (#‘𝑊) ∈ ℕ)
39 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
4038, 39syl6eleq 2698 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → (#‘𝑊) ∈ (ℤ‘1))
41 gsumval3.f . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
4241adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝐹:𝐴𝐵)
43 frn 5966 . . . . . . . . . 10 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
4442, 43syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → ran 𝐹𝐵)
45 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(#‘𝑊))–1-1-onto𝑊)
46 f1ocnv 6062 . . . . . . . . . . 11 (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑔:𝑊1-1-onto→(1...(#‘𝑊)))
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑔:𝑊1-1-onto→(1...(#‘𝑊)))
48 simprl 790 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
49 f1oco 6072 . . . . . . . . . 10 ((𝑔:𝑊1-1-onto→(1...(#‘𝑊)) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊) → (𝑔𝑓):(1...(#‘𝑊))–1-1-onto→(1...(#‘𝑊)))
5047, 48, 49syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → (𝑔𝑓):(1...(#‘𝑊))–1-1-onto→(1...(#‘𝑊)))
51 f1of 6050 . . . . . . . . . . . 12 (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))⟶𝑊)
5245, 51syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(#‘𝑊))⟶𝑊)
53 fvco3 6185 . . . . . . . . . . 11 ((𝑔:(1...(#‘𝑊))⟶𝑊𝑥 ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘𝑥) = (𝐹‘(𝑔𝑥)))
5452, 53sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘𝑥) = (𝐹‘(𝑔𝑥)))
55 ffn 5958 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5642, 55syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝐹 Fn 𝐴)
5756adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(#‘𝑊))) → 𝐹 Fn 𝐴)
58 gsumval3a.s . . . . . . . . . . . . . 14 (𝜑𝑊𝐴)
5958adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑊𝐴)
6052, 59fssd 5970 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑔:(1...(#‘𝑊))⟶𝐴)
6160ffvelrnda 6267 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(#‘𝑊))) → (𝑔𝑥) ∈ 𝐴)
62 fnfvelrn 6264 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ (𝑔𝑥) ∈ 𝐴) → (𝐹‘(𝑔𝑥)) ∈ ran 𝐹)
6357, 61, 62syl2anc 691 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(#‘𝑊))) → (𝐹‘(𝑔𝑥)) ∈ ran 𝐹)
6454, 63eqeltrd 2688 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘𝑥) ∈ ran 𝐹)
65 f1of 6050 . . . . . . . . . . . . . . 15 (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑓:(1...(#‘𝑊))⟶𝑊)
6648, 65syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(#‘𝑊))⟶𝑊)
67 fvco3 6185 . . . . . . . . . . . . . 14 ((𝑓:(1...(#‘𝑊))⟶𝑊𝑘 ∈ (1...(#‘𝑊))) → ((𝑔𝑓)‘𝑘) = (𝑔‘(𝑓𝑘)))
6866, 67sylan 487 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝑔𝑓)‘𝑘) = (𝑔‘(𝑓𝑘)))
6968fveq2d 6107 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (𝑔‘((𝑔𝑓)‘𝑘)) = (𝑔‘(𝑔‘(𝑓𝑘))))
7045adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → 𝑔:(1...(#‘𝑊))–1-1-onto𝑊)
7166ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (𝑓𝑘) ∈ 𝑊)
72 f1ocnvfv2 6433 . . . . . . . . . . . . 13 ((𝑔:(1...(#‘𝑊))–1-1-onto𝑊 ∧ (𝑓𝑘) ∈ 𝑊) → (𝑔‘(𝑔‘(𝑓𝑘))) = (𝑓𝑘))
7370, 71, 72syl2anc 691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (𝑔‘(𝑔‘(𝑓𝑘))) = (𝑓𝑘))
7469, 73eqtr2d 2645 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (𝑓𝑘) = (𝑔‘((𝑔𝑓)‘𝑘)))
7574fveq2d 6107 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → (𝐹‘(𝑓𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
76 fvco3 6185 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝑊))⟶𝑊𝑘 ∈ (1...(#‘𝑊))) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
7766, 76sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
78 f1of 6050 . . . . . . . . . . . . 13 ((𝑔𝑓):(1...(#‘𝑊))–1-1-onto→(1...(#‘𝑊)) → (𝑔𝑓):(1...(#‘𝑊))⟶(1...(#‘𝑊)))
7950, 78syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → (𝑔𝑓):(1...(#‘𝑊))⟶(1...(#‘𝑊)))
8079ffvelrnda 6267 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝑔𝑓)‘𝑘) ∈ (1...(#‘𝑊)))
81 fvco3 6185 . . . . . . . . . . . 12 ((𝑔:(1...(#‘𝑊))⟶𝐴 ∧ ((𝑔𝑓)‘𝑘) ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
8260, 81sylan 487 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ ((𝑔𝑓)‘𝑘) ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
8380, 82syldan 486 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)) = (𝐹‘(𝑔‘((𝑔𝑓)‘𝑘))))
8475, 77, 833eqtr4d 2654 . . . . . . . . 9 (((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(#‘𝑊))) → ((𝐹𝑓)‘𝑘) = ((𝐹𝑔)‘((𝑔𝑓)‘𝑘)))
8526, 34, 36, 40, 44, 50, 64, 84seqf1o 12704 . . . . . . . 8 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → (seq1( + , (𝐹𝑓))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))
86 eqeq12 2623 . . . . . . . 8 ((𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊))) → (𝑥 = 𝑦 ↔ (seq1( + , (𝐹𝑓))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘𝑊))))
8785, 86syl5ibrcom 236 . . . . . . 7 ((𝜑 ∧ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊)) → ((𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊))) → 𝑥 = 𝑦))
8887expimpd 627 . . . . . 6 (𝜑 → (((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊) ∧ (𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ∧ 𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦))
8919, 88syl5bir 232 . . . . 5 (𝜑 → (((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦))
9089exlimdvv 1849 . . . 4 (𝜑 → (∃𝑓𝑔((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦))
9118, 90syl5bir 232 . . 3 (𝜑 → ((∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦))
9291alrimivv 1843 . 2 (𝜑 → ∀𝑥𝑦((∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦))
93 eqeq1 2614 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))))
9493anbi2d 736 . . . . 5 (𝑥 = 𝑦 → ((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)))))
9594exbidv 1837 . . . 4 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)))))
96 f1oeq1 6040 . . . . . 6 (𝑓 = 𝑔 → (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑔:(1...(#‘𝑊))–1-1-onto𝑊))
97 coeq2 5202 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹𝑓) = (𝐹𝑔))
9897seqeq3d 12671 . . . . . . . 8 (𝑓 = 𝑔 → seq1( + , (𝐹𝑓)) = seq1( + , (𝐹𝑔)))
9998fveq1d 6105 . . . . . . 7 (𝑓 = 𝑔 → (seq1( + , (𝐹𝑓))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))
10099eqeq2d 2620 . . . . . 6 (𝑓 = 𝑔 → (𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊)) ↔ 𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊))))
10196, 100anbi12d 743 . . . . 5 (𝑓 = 𝑔 → ((𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ (𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))))
102101cbvexv 2263 . . . 4 (∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊))))
10395, 102syl6bb 275 . . 3 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))))
104103eu4 2506 . 2 (∃!𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ↔ (∃𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ ∀𝑥𝑦((∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))) ∧ ∃𝑔(𝑔:(1...(#‘𝑊))–1-1-onto𝑊𝑦 = (seq1( + , (𝐹𝑔))‘(#‘𝑊)))) → 𝑥 = 𝑦)))
10517, 92, 104sylanbrc 695 1 (𝜑 → ∃!𝑥𝑓(𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(#‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wne 2780  wss 3540  c0 3874  ccnv 5037  ran crn 5039  ccom 5042   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816  cn 10897  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cntz 17573
This theorem is referenced by:  gsumval3lem2  18130
  Copyright terms: Public domain W3C validator