MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Unicode version

Theorem gsumval3eu 17034
Description: The group sum as defined in gsumval3a 17032 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.s  |-  ( ph  ->  W  C_  A )
Assertion
Ref Expression
gsumval3eu  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3eu
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6  |-  ( ph  ->  W  =/=  (/) )
21neneqd 2659 . . . . 5  |-  ( ph  ->  -.  W  =  (/) )
3 gsumval3a.t . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
4 fz1f1o 13544 . . . . . . 7  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  (
( # `  W )  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  ( W  =  (/)  \/  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
65ord 377 . . . . 5  |-  ( ph  ->  ( -.  W  =  (/)  ->  ( ( # `  W )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) ) )
72, 6mpd 15 . . . 4  |-  ( ph  ->  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
87simprd 463 . . 3  |-  ( ph  ->  E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )
9 excom 1850 . . . 4  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) )
10 exancom 1672 . . . . . 6  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. x
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )
11 fvex 5882 . . . . . . 7  |-  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  e.  _V
12 biidd 237 . . . . . . 7  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
1311, 12ceqsexv 3146 . . . . . 6  |-  ( E. x ( x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1410, 13bitri 249 . . . . 5  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1514exbii 1668 . . . 4  |-  ( E. f E. x ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
169, 15bitri 249 . . 3  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
178, 16sylibr 212 . 2  |-  ( ph  ->  E. x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
18 eeanv 1989 . . . 4  |-  ( E. f E. g ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) ) )  <-> 
( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
19 an4 824 . . . . . 6  |-  ( ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  /\  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  <->  ( (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
20 gsumval3.g . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
2120adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  G  e.  Mnd )
22 gsumval3.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
23 gsumval3.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
2422, 23mndcl 16056 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
25243expb 1197 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
2621, 25sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
27 gsumval3.c . . . . . . . . . . . . 13  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
2827adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  ( Z `  ran  F ) )
2928sselda 3499 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ran  F )  ->  x  e.  ( Z `  ran  F ) )
3029adantrr 716 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  x  e.  ( Z `  ran  F ) )
31 simprr 757 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  y  e.  ran  F )
32 gsumval3.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
3323, 32cntzi 16494 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
3430, 31, 33syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
3522, 23mndass 16057 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
3621, 35sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
377simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  e.  NN )
3837adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  NN )
39 nnuz 11141 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4038, 39syl6eleq 2555 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  ( ZZ>= `  1 )
)
41 gsumval3.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
4241adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F : A --> B )
43 frn 5743 . . . . . . . . . 10  |-  ( F : A --> B  ->  ran  F  C_  B )
4442, 43syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  B )
45 simprr 757 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
46 f1ocnv 5834 . . . . . . . . . . 11  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
4745, 46syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
48 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
49 f1oco 5844 . . . . . . . . . 10  |-  ( ( `' g : W -1-1-onto-> (
1 ... ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
5047, 48, 49syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
51 f1of 5822 . . . . . . . . . . . 12  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  g :
( 1 ... ( # `
 W ) ) --> W )
5245, 51syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> W )
53 fvco3 5950 . . . . . . . . . . 11  |-  ( ( g : ( 1 ... ( # `  W
) ) --> W  /\  x  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  x
)  =  ( F `
 ( g `  x ) ) )
5452, 53sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  =  ( F `  ( g `
 x ) ) )
55 ffn 5737 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  F  Fn  A )
5642, 55syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F  Fn  A )
5756adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  F  Fn  A )
58 gsumval3a.s . . . . . . . . . . . . . 14  |-  ( ph  ->  W  C_  A )
5958adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  W  C_  A )
6052, 59fssd 5746 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> A )
6160ffvelrnda 6032 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  x )  e.  A
)
62 fnfvelrn 6029 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  ( g `  x
)  e.  A )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6357, 61, 62syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6454, 63eqeltrd 2545 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  e.  ran  F )
65 f1of 5822 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
6648, 65syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) --> W )
67 fvco3 5950 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( `' g  o.  f ) `  k )  =  ( `' g `  (
f `  k )
) )
6866, 67sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  =  ( `' g `
 ( f `  k ) ) )
6968fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( ( `' g  o.  f ) `  k ) )  =  ( g `  ( `' g `  (
f `  k )
) ) )
7045adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  g :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
7166ffvelrnda 6032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  e.  W
)
72 f1ocnvfv2 6184 . . . . . . . . . . . . 13  |-  ( ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  ( f `
 k )  e.  W )  ->  (
g `  ( `' g `  ( f `  k ) ) )  =  ( f `  k ) )
7370, 71, 72syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( `' g `  ( f `  k
) ) )  =  ( f `  k
) )
7469, 73eqtr2d 2499 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  =  ( g `  ( ( `' g  o.  f
) `  k )
) )
7574fveq2d 5876 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( f `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
76 fvco3 5950 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  f ) `  k
)  =  ( F `
 ( f `  k ) ) )
7766, 76sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( F `  ( f `
 k ) ) )
78 f1of 5822 . . . . . . . . . . . . 13  |-  ( ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) )  ->  ( `' g  o.  f ) : ( 1 ... ( # `
 W ) ) --> ( 1 ... ( # `
 W ) ) )
7950, 78syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) --> ( 1 ... ( # `  W
) ) )
8079ffvelrnda 6032 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  e.  ( 1 ... ( # `
 W ) ) )
81 fvco3 5950 . . . . . . . . . . . 12  |-  ( ( g : ( 1 ... ( # `  W
) ) --> A  /\  ( ( `' g  o.  f ) `  k )  e.  ( 1 ... ( # `  W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8260, 81sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
( `' g  o.  f ) `  k
)  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  (
( `' g  o.  f ) `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
8380, 82syldan 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8475, 77, 833eqtr4d 2508 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( ( F  o.  g
) `  ( ( `' g  o.  f
) `  k )
) )
8526, 34, 36, 40, 44, 50, 64, 84seqf1o 12151 . . . . . . . 8  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
86 eqeq12 2476 . . . . . . . 8  |-  ( ( x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) )  ->  (
x  =  y  <->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )
8785, 86syl5ibrcom 222 . . . . . . 7  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) )  ->  x  =  y )
)
8887expimpd 603 . . . . . 6  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )  /\  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  /\  y  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )  ->  x  =  y ) )
8919, 88syl5bir 218 . . . . 5  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9089exlimdvv 1726 . . . 4  |-  ( ph  ->  ( E. f E. g ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9118, 90syl5bir 218 . . 3  |-  ( ph  ->  ( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9291alrimivv 1721 . 2  |-  ( ph  ->  A. x A. y
( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
93 eqeq1 2461 . . . . . 6  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
9493anbi2d 703 . . . . 5  |-  ( x  =  y  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
9594exbidv 1715 . . . 4  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
96 f1oeq1 5813 . . . . . 6  |-  ( f  =  g  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  g : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
97 coeq2 5171 . . . . . . . . 9  |-  ( f  =  g  ->  ( F  o.  f )  =  ( F  o.  g ) )
9897seqeq3d 12118 . . . . . . . 8  |-  ( f  =  g  ->  seq 1 (  .+  , 
( F  o.  f
) )  =  seq 1 (  .+  , 
( F  o.  g
) ) )
9998fveq1d 5874 . . . . . . 7  |-  ( f  =  g  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
10099eqeq2d 2471 . . . . . 6  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10196, 100anbi12d 710 . . . . 5  |-  ( f  =  g  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
102101cbvexv 2025 . . . 4  |-  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10395, 102syl6bb 261 . . 3  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
104103eu4 2339 . 2  |-  ( E! x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  A. x A. y ( ( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  ->  x  =  y )
) )
10517, 92, 104sylanbrc 664 1  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   E!weu 2283    =/= wne 2652    C_ wss 3471   (/)c0 3793   `'ccnv 5007   ran crn 5009    o. ccom 5012    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   Fincfn 7535   1c1 9510   NNcn 10556   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   #chash 12408   Basecbs 14644   +g cplusg 14712   0gc0g 14857   Mndcmnd 16046  Cntzccntz 16480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-seq 12111  df-hash 12409  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-cntz 16482
This theorem is referenced by:  gsumval3OLD  17035  gsumval3lem2  17037
  Copyright terms: Public domain W3C validator