MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3eu Structured version   Unicode version

Theorem gsumval3eu 16707
Description: The group sum as defined in gsumval3a 16705 is uniquely defined. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.s  |-  ( ph  ->  W  C_  A )
Assertion
Ref Expression
gsumval3eu  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3eu
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3a.n . . . . . 6  |-  ( ph  ->  W  =/=  (/) )
21neneqd 2669 . . . . 5  |-  ( ph  ->  -.  W  =  (/) )
3 gsumval3a.t . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
4 fz1f1o 13494 . . . . . . 7  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  (
( # `  W )  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  ( W  =  (/)  \/  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) ) )
65ord 377 . . . . 5  |-  ( ph  ->  ( -.  W  =  (/)  ->  ( ( # `  W )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) ) )
72, 6mpd 15 . . . 4  |-  ( ph  ->  ( ( # `  W
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
87simprd 463 . . 3  |-  ( ph  ->  E. f  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )
9 excom 1798 . . . 4  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) )
10 exancom 1648 . . . . . 6  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. x
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )
11 fvex 5875 . . . . . . 7  |-  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  e.  _V
12 biidd 237 . . . . . . 7  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
1311, 12ceqsexv 3150 . . . . . 6  |-  ( E. x ( x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1410, 13bitri 249 . . . . 5  |-  ( E. x ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  f :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
1514exbii 1644 . . . 4  |-  ( E. f E. x ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
169, 15bitri 249 . . 3  |-  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  E. f 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
178, 16sylibr 212 . 2  |-  ( ph  ->  E. x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
18 eeanv 1957 . . . 4  |-  ( E. f E. g ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) ) )  <-> 
( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
19 an4 822 . . . . . 6  |-  ( ( ( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  /\  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  <->  ( (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
20 gsumval3.g . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
2120adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  G  e.  Mnd )
22 gsumval3.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
23 gsumval3.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
2422, 23mndcl 15736 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
25243expb 1197 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
2621, 25sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
27 gsumval3.c . . . . . . . . . . . . 13  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
2827adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  ( Z `  ran  F ) )
2928sselda 3504 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ran  F )  ->  x  e.  ( Z `  ran  F ) )
3029adantrr 716 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  x  e.  ( Z `  ran  F ) )
31 simprr 756 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  y  e.  ran  F )
32 gsumval3.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
3323, 32cntzi 16169 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
3430, 31, 33syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  ran  F  /\  y  e.  ran  F ) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
3522, 23mndass 15737 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
3621, 35sylan 471 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
377simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  e.  NN )
3837adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  NN )
39 nnuz 11116 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4038, 39syl6eleq 2565 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( # `
 W )  e.  ( ZZ>= `  1 )
)
41 gsumval3.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
4241adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F : A --> B )
43 frn 5736 . . . . . . . . . 10  |-  ( F : A --> B  ->  ran  F  C_  B )
4442, 43syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ran  F 
C_  B )
45 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
46 f1ocnv 5827 . . . . . . . . . . 11  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
4745, 46syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  `' g : W -1-1-onto-> ( 1 ... ( # `
 W ) ) )
48 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
49 f1oco 5837 . . . . . . . . . 10  |-  ( ( `' g : W -1-1-onto-> (
1 ... ( # `  W
) )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
5047, 48, 49syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) ) )
51 f1of 5815 . . . . . . . . . . . 12  |-  ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  g :
( 1 ... ( # `
 W ) ) --> W )
5245, 51syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> W )
53 fvco3 5943 . . . . . . . . . . 11  |-  ( ( g : ( 1 ... ( # `  W
) ) --> W  /\  x  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  x
)  =  ( F `
 ( g `  x ) ) )
5452, 53sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  =  ( F `  ( g `
 x ) ) )
55 ffn 5730 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  F  Fn  A )
5642, 55syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  F  Fn  A )
5756adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  F  Fn  A )
58 gsumval3a.s . . . . . . . . . . . . . 14  |-  ( ph  ->  W  C_  A )
5958adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  W  C_  A )
60 fss 5738 . . . . . . . . . . . . 13  |-  ( ( g : ( 1 ... ( # `  W
) ) --> W  /\  W  C_  A )  -> 
g : ( 1 ... ( # `  W
) ) --> A )
6152, 59, 60syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  g : ( 1 ... ( # `  W
) ) --> A )
6261ffvelrnda 6020 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  x )  e.  A
)
63 fnfvelrn 6017 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  ( g `  x
)  e.  A )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6457, 62, 63syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( g `  x
) )  e.  ran  F )
6554, 64eqeltrd 2555 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  x  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  x )  e.  ran  F )
66 f1of 5815 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
6748, 66syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  f : ( 1 ... ( # `  W
) ) --> W )
68 fvco3 5943 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( `' g  o.  f ) `  k )  =  ( `' g `  (
f `  k )
) )
6967, 68sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  =  ( `' g `
 ( f `  k ) ) )
7069fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( ( `' g  o.  f ) `  k ) )  =  ( g `  ( `' g `  (
f `  k )
) ) )
7145adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  g :
( 1 ... ( # `
 W ) ) -1-1-onto-> W )
7267ffvelrnda 6020 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  e.  W
)
73 f1ocnvfv2 6170 . . . . . . . . . . . . 13  |-  ( ( g : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  ( f `
 k )  e.  W )  ->  (
g `  ( `' g `  ( f `  k ) ) )  =  ( f `  k ) )
7471, 72, 73syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( g `  ( `' g `  ( f `  k
) ) )  =  ( f `  k
) )
7570, 74eqtr2d 2509 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( f `  k )  =  ( g `  ( ( `' g  o.  f
) `  k )
) )
7675fveq2d 5869 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( F `  ( f `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
77 fvco3 5943 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  k  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  f ) `  k
)  =  ( F `
 ( f `  k ) ) )
7867, 77sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( F `  ( f `
 k ) ) )
79 f1of 5815 . . . . . . . . . . . . 13  |-  ( ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( 1 ... ( # `
 W ) )  ->  ( `' g  o.  f ) : ( 1 ... ( # `
 W ) ) --> ( 1 ... ( # `
 W ) ) )
8050, 79syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  ( `' g  o.  f
) : ( 1 ... ( # `  W
) ) --> ( 1 ... ( # `  W
) ) )
8180ffvelrnda 6020 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( `' g  o.  f
) `  k )  e.  ( 1 ... ( # `
 W ) ) )
82 fvco3 5943 . . . . . . . . . . . 12  |-  ( ( g : ( 1 ... ( # `  W
) ) --> A  /\  ( ( `' g  o.  f ) `  k )  e.  ( 1 ... ( # `  W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8361, 82sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  (
( `' g  o.  f ) `  k
)  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  g ) `  (
( `' g  o.  f ) `  k
) )  =  ( F `  ( g `
 ( ( `' g  o.  f ) `
 k ) ) ) )
8481, 83syldan 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  g ) `  ( ( `' g  o.  f ) `  k ) )  =  ( F `  (
g `  ( ( `' g  o.  f
) `  k )
) ) )
8576, 78, 843eqtr4d 2518 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  /\  k  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( F  o.  f ) `  k )  =  ( ( F  o.  g
) `  ( ( `' g  o.  f
) `  k )
) )
8626, 34, 36, 40, 44, 50, 65, 85seqf1o 12115 . . . . . . . 8  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
87 eqeq12 2486 . . . . . . . 8  |-  ( ( x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) )  ->  (
x  =  y  <->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )
8886, 87syl5ibrcom 222 . . . . . . 7  |-  ( (
ph  /\  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W ) )  ->  (
( x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) )  /\  y  =  (  seq 1 ( 
.+  ,  ( F  o.  g ) ) `
 ( # `  W
) ) )  ->  x  =  y )
)
8988expimpd 603 . . . . . 6  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W )  /\  ( x  =  (  seq 1
(  .+  ,  ( F  o.  f )
) `  ( # `  W
) )  /\  y  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) ) )  ->  x  =  y ) )
9019, 89syl5bir 218 . . . . 5  |-  ( ph  ->  ( ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9190exlimdvv 1701 . . . 4  |-  ( ph  ->  ( E. f E. g ( ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  ( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9218, 91syl5bir 218 . . 3  |-  ( ph  ->  ( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
9392alrimivv 1696 . 2  |-  ( ph  ->  A. x A. y
( ( E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  /\  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )  ->  x  =  y ) )
94 eqeq1 2471 . . . . . 6  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
9594anbi2d 703 . . . . 5  |-  ( x  =  y  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
9695exbidv 1690 . . . 4  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
97 f1oeq1 5806 . . . . . 6  |-  ( f  =  g  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  <->  g : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
98 coeq2 5160 . . . . . . . . 9  |-  ( f  =  g  ->  ( F  o.  f )  =  ( F  o.  g ) )
9998seqeq3d 12082 . . . . . . . 8  |-  ( f  =  g  ->  seq 1 (  .+  , 
( F  o.  f
) )  =  seq 1 (  .+  , 
( F  o.  g
) ) )
10099fveq1d 5867 . . . . . . 7  |-  ( f  =  g  ->  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  W
) ) )
101100eqeq2d 2481 . . . . . 6  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) )  <-> 
y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10297, 101anbi12d 710 . . . . 5  |-  ( f  =  g  ->  (
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) )  <->  ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) ) )
103102cbvexv 1997 . . . 4  |-  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) )
10496, 103syl6bb 261 . . 3  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) )  <->  E. g
( g : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 W ) ) ) ) )
105104eu4 2340 . 2  |-  ( E! x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  <->  ( E. x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  A. x A. y ( ( E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )  /\  E. g ( g : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  y  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  W ) ) ) )  ->  x  =  y )
) )
10617, 93, 105sylanbrc 664 1  |-  ( ph  ->  E! x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275    =/= wne 2662    C_ wss 3476   (/)c0 3785   `'ccnv 4998   ran crn 5000    o. ccom 5003    Fn wfn 5582   -->wf 5583   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   Fincfn 7516   1c1 9492   NNcn 10535   ZZ>=cuz 11081   ...cfz 11671    seqcseq 12074   #chash 12372   Basecbs 14489   +g cplusg 14554   0gc0g 14694   Mndcmnd 15725  Cntzccntz 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8319  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-n0 10795  df-z 10864  df-uz 11082  df-fz 11672  df-fzo 11792  df-seq 12075  df-hash 12373  df-mnd 15731  df-cntz 16157
This theorem is referenced by:  gsumval3OLD  16708  gsumval3lem2  16710
  Copyright terms: Public domain W3C validator