Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1o Structured version   Visualization version   GIF version

Theorem seqf1o 12704
 Description: Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1o.6 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
seqf1o.7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)
seqf1o.8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
Assertion
Ref Expression
seqf1o (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐹   𝑘,𝐺,𝑥,𝑦,𝑧   𝑘,𝑀,𝑥,𝑦,𝑧   + ,𝑘,𝑥,𝑦,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝐶,𝑘,𝑥,𝑦,𝑧   𝑘,𝐻
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑧)

Proof of Theorem seqf1o
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.6 . . 3 (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
2 seqf1o.7 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)
3 eqid 2610 . . . 4 (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))
42, 3fmptd 6292 . . 3 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶)
5 seqf1o.4 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
6 oveq2 6557 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
7 f1oeq23 6043 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑀) ∧ (𝑀...𝑥) = (𝑀...𝑀)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)))
86, 6, 7syl2anc 691 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)))
96feq2d 5944 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑀)⟶𝐶))
108, 9anbi12d 743 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)))
11 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑀 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑀))
12 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑀 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑀))
1311, 12eqeq12d 2625 . . . . . . . . 9 (𝑥 = 𝑀 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
1410, 13imbi12d 333 . . . . . . . 8 (𝑥 = 𝑀 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
15142albidv 1838 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
1615imbi2d 329 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))))
17 oveq2 6557 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘))
18 f1oeq23 6043 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑘) ∧ (𝑀...𝑥) = (𝑀...𝑘)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
1917, 17, 18syl2anc 691 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
2017feq2d 5944 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑘)⟶𝐶))
2119, 20anbi12d 743 . . . . . . . . 9 (𝑥 = 𝑘 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶)))
22 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑘 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑘))
23 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑘 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑘))
2422, 23eqeq12d 2625 . . . . . . . . 9 (𝑥 = 𝑘 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))
2521, 24imbi12d 333 . . . . . . . 8 (𝑥 = 𝑘 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))
26252albidv 1838 . . . . . . 7 (𝑥 = 𝑘 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))
2726imbi2d 329 . . . . . 6 (𝑥 = 𝑘 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))))
28 oveq2 6557 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑀...𝑥) = (𝑀...(𝑘 + 1)))
29 f1oeq23 6043 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...(𝑘 + 1)) ∧ (𝑀...𝑥) = (𝑀...(𝑘 + 1))) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))))
3028, 28, 29syl2anc 691 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))))
3128feq2d 5944 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...(𝑘 + 1))⟶𝐶))
3230, 31anbi12d 743 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)))
33 fveq2 6103 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)))
34 fveq2 6103 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))
3533, 34eqeq12d 2625 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))
3632, 35imbi12d 333 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
37362albidv 1838 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
3837imbi2d 329 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
39 oveq2 6557 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
40 f1oeq23 6043 . . . . . . . . . . 11 (((𝑀...𝑥) = (𝑀...𝑁) ∧ (𝑀...𝑥) = (𝑀...𝑁)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
4139, 39, 40syl2anc 691 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
4239feq2d 5944 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑔:(𝑀...𝑥)⟶𝐶𝑔:(𝑀...𝑁)⟶𝐶))
4341, 42anbi12d 743 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶)))
44 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑁 → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , (𝑔𝑓))‘𝑁))
45 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑁 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑁))
4644, 45eqeq12d 2625 . . . . . . . . 9 (𝑥 = 𝑁 → ((seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
4743, 46imbi12d 333 . . . . . . . 8 (𝑥 = 𝑁 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
48472albidv 1838 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
4948imbi2d 329 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))))
50 f1of 6050 . . . . . . . . . . . . 13 (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀))
5150adantr 480 . . . . . . . . . . . 12 ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀))
52 elfz3 12222 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
53 fvco3 6185 . . . . . . . . . . . 12 ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → ((𝑔𝑓)‘𝑀) = (𝑔‘(𝑓𝑀)))
5451, 52, 53syl2anr 494 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔𝑓)‘𝑀) = (𝑔‘(𝑓𝑀)))
55 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → (𝑓𝑀) ∈ (𝑀...𝑀))
5650, 52, 55syl2anr 494 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓𝑀) ∈ (𝑀...𝑀))
57 fzsn 12254 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5857eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → ((𝑓𝑀) ∈ (𝑀...𝑀) ↔ (𝑓𝑀) ∈ {𝑀}))
59 elsni 4142 . . . . . . . . . . . . . . . 16 ((𝑓𝑀) ∈ {𝑀} → (𝑓𝑀) = 𝑀)
6058, 59syl6bi 242 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → ((𝑓𝑀) ∈ (𝑀...𝑀) → (𝑓𝑀) = 𝑀))
6160imp 444 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (𝑓𝑀) ∈ (𝑀...𝑀)) → (𝑓𝑀) = 𝑀)
6256, 61syldan 486 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓𝑀) = 𝑀)
6362adantrr 749 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑓𝑀) = 𝑀)
6463fveq2d 6107 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓𝑀)) = (𝑔𝑀))
6554, 64eqtrd 2644 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔𝑓)‘𝑀) = (𝑔𝑀))
66 seq1 12676 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (seq𝑀( + , (𝑔𝑓))‘𝑀) = ((𝑔𝑓)‘𝑀))
6766adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = ((𝑔𝑓)‘𝑀))
68 seq1 12676 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔𝑀))
6968adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔𝑀))
7065, 67, 693eqtr4d 2654 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))
7170ex 449 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
7271alrimivv 1843 . . . . . . 7 (𝑀 ∈ ℤ → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))
7372a1d 25 . . . . . 6 (𝑀 ∈ ℤ → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))
74 f1oeq1 6040 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ↔ 𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘)))
75 feq1 5939 . . . . . . . . . . . 12 (𝑔 = 𝑠 → (𝑔:(𝑀...𝑘)⟶𝐶𝑠:(𝑀...𝑘)⟶𝐶))
7674, 75bi2anan9r 914 . . . . . . . . . . 11 ((𝑔 = 𝑠𝑓 = 𝑡) → ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) ↔ (𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶)))
77 coeq1 5201 . . . . . . . . . . . . . . 15 (𝑔 = 𝑠 → (𝑔𝑓) = (𝑠𝑓))
78 coeq2 5202 . . . . . . . . . . . . . . 15 (𝑓 = 𝑡 → (𝑠𝑓) = (𝑠𝑡))
7977, 78sylan9eq 2664 . . . . . . . . . . . . . 14 ((𝑔 = 𝑠𝑓 = 𝑡) → (𝑔𝑓) = (𝑠𝑡))
8079seqeq3d 12671 . . . . . . . . . . . . 13 ((𝑔 = 𝑠𝑓 = 𝑡) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , (𝑠𝑡)))
8180fveq1d 6105 . . . . . . . . . . . 12 ((𝑔 = 𝑠𝑓 = 𝑡) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , (𝑠𝑡))‘𝑘))
82 simpl 472 . . . . . . . . . . . . . 14 ((𝑔 = 𝑠𝑓 = 𝑡) → 𝑔 = 𝑠)
8382seqeq3d 12671 . . . . . . . . . . . . 13 ((𝑔 = 𝑠𝑓 = 𝑡) → seq𝑀( + , 𝑔) = seq𝑀( + , 𝑠))
8483fveq1d 6105 . . . . . . . . . . . 12 ((𝑔 = 𝑠𝑓 = 𝑡) → (seq𝑀( + , 𝑔)‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))
8581, 84eqeq12d 2625 . . . . . . . . . . 11 ((𝑔 = 𝑠𝑓 = 𝑡) → ((seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘) ↔ (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
8676, 85imbi12d 333 . . . . . . . . . 10 ((𝑔 = 𝑠𝑓 = 𝑡) → (((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))))
8786cbval2v 2273 . . . . . . . . 9 (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
88 simplll 794 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝜑)
89 seqf1o.1 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9088, 89sylan 487 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
91 seqf1o.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
9288, 91sylan 487 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
93 seqf1o.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9488, 93sylan 487 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
95 simpllr 795 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑘 ∈ (ℤ𝑀))
96 seqf1o.5 . . . . . . . . . . . . . . 15 (𝜑𝐶𝑆)
9788, 96syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝐶𝑆)
98 simprl 790 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))
99 simprr 792 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)
100 eqid 2610 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) = (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1))))
101 eqid 2610 . . . . . . . . . . . . . 14 (𝑓‘(𝑘 + 1)) = (𝑓‘(𝑘 + 1))
102 simplr 788 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))
103102, 87sylib 207 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))
10490, 92, 94, 95, 97, 98, 99, 100, 101, 103seqf1olem2 12703 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))
105104exp31 628 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
10687, 105syl5bir 232 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
107106alrimdv 1844 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
108107alrimdv 1844 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑠𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
10987, 108syl5bi 231 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))
110109expcom 450 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
111110a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))))
11216, 27, 38, 49, 73, 111uzind4 11622 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))
1135, 112mpcom 37 . . . 4 (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))
114 fvex 6113 . . . . . . 7 (𝐺𝑥) ∈ V
115114, 3fnmpti 5935 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) Fn (𝑀...𝑁)
116 fzfi 12633 . . . . . 6 (𝑀...𝑁) ∈ Fin
117 fnfi 8123 . . . . . 6 (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin)
118115, 116, 117mp2an 704 . . . . 5 (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin
119 f1of 6050 . . . . . . 7 (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
1201, 119syl 17 . . . . . 6 (𝜑𝐹:(𝑀...𝑁)⟶(𝑀...𝑁))
121 ovex 6577 . . . . . . 7 (𝑀...𝑁) ∈ V
122121a1i 11 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ V)
123 fex2 7014 . . . . . 6 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ V ∧ (𝑀...𝑁) ∈ V) → 𝐹 ∈ V)
124120, 122, 122, 123syl3anc 1318 . . . . 5 (𝜑𝐹 ∈ V)
125 f1oeq1 6040 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
126 feq1 5939 . . . . . . . 8 (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶))
127125, 126bi2anan9r 914 . . . . . . 7 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶)))
128 coeq1 5201 . . . . . . . . . . 11 (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) → (𝑔𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝑓))
129 coeq2 5202 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))
130128, 129sylan9eq 2664 . . . . . . . . . 10 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (𝑔𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))
131130seqeq3d 12671 . . . . . . . . 9 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , (𝑔𝑓)) = seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)))
132131fveq1d 6105 . . . . . . . 8 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁))
133 simpl 472 . . . . . . . . . 10 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → 𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))
134133seqeq3d 12671 . . . . . . . . 9 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))))
135134fveq1d 6105 . . . . . . . 8 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))
136132, 135eqeq12d 2625 . . . . . . 7 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → ((seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁)))
137127, 136imbi12d 333 . . . . . 6 ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∧ 𝑓 = 𝐹) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
138137spc2gv 3269 . . . . 5 (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∈ Fin ∧ 𝐹 ∈ V) → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
139118, 124, 138sylancr 694 . . . 4 (𝜑 → (∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))))
140113, 139mpd 15 . . 3 (𝜑 → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁)))
1411, 4, 140mp2and 711 . 2 (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁))
142120ffvelrnda 6267 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ (𝑀...𝑁))
143 fveq2 6103 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝐺𝑥) = (𝐺‘(𝐹𝑘)))
144 fvex 6113 . . . . . 6 (𝐺‘(𝐹𝑘)) ∈ V
145143, 3, 144fvmpt 6191 . . . . 5 ((𝐹𝑘) ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)) = (𝐺‘(𝐹𝑘)))
146142, 145syl 17 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)) = (𝐺‘(𝐹𝑘)))
147 fvco3 6185 . . . . 5 ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)))
148120, 147sylan 487 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘(𝐹𝑘)))
149 seqf1o.8 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))
150146, 148, 1493eqtr4d 2654 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹)‘𝑘) = (𝐻𝑘))
1515, 150seqfveq 12687 . 2 (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , 𝐻)‘𝑁))
152 fveq2 6103 . . . . 5 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
153 fvex 6113 . . . . 5 (𝐺𝑘) ∈ V
154152, 3, 153fvmpt 6191 . . . 4 (𝑘 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘𝑘) = (𝐺𝑘))
155154adantl 481 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥))‘𝑘) = (𝐺𝑘))
1565, 155seqfveq 12687 . 2 (𝜑 → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺𝑥)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
157141, 151, 1563eqtr3d 2652 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037   ∘ ccom 5042   Fn wfn 5799  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816   + caddc 9818   < clt 9953  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664 This theorem is referenced by:  summolem3  14292  prodmolem3  14502  eulerthlem2  15325  gsumval3eu  18128  gsumval3  18131
 Copyright terms: Public domain W3C validator