MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 18129
Description: Lemma 1 for gsumval3 18131. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 758 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 7195 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 3598 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
7 f1f 6014 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 5971 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
11 fdm 5964 . . . . . . . . 9 ((𝐹𝐻):(1...𝑀)⟶𝐵 → dom (𝐹𝐻) = (1...𝑀))
1210, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝐹𝐻) = (1...𝑀))
135, 12syl5sseq 3616 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1413ad2antrr 758 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
15 f1ores 6064 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
162, 14, 15syl2anc 691 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
173imaeq2i 5383 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
18 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
19 fex 6394 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
206, 18, 19syl2anc 691 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
21 ovex 6577 . . . . . . . . . . . 12 (1...𝑀) ∈ V
22 fex 6394 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
237, 21, 22sylancl 693 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
241, 23syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
25 f1fun 6016 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
261, 25syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
27 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2826, 27jca 553 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2920, 24, 28jca31 555 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
3029ad2antrr 758 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
31 imacosupp 7222 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
3231imp 444 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3330, 32syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3417, 33syl5eq 2656 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
35 f1oeq3 6042 . . . . . 6 ((𝐻𝑊) = (𝐹 supp 0 ) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3634, 35syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3716, 36mpbid 221 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
38 isof1o 6473 . . . . 5 (𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊) → 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
3938ad2antll 761 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
40 f1oco 6072 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
4137, 39, 40syl2anc 691 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
42 f1of 6050 . . . . 5 (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑓:(1...(#‘𝑊))⟶𝑊)
43 frn 5966 . . . . 5 (𝑓:(1...(#‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4439, 42, 433syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝑓𝑊)
45 cores 5555 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
46 f1oeq1 6040 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4744, 45, 463syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4841, 47mpbid 221 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
49 fzfi 12633 . . . . . . . . . 10 (1...𝑀) ∈ Fin
5049a1i 11 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
51 fex2 7014 . . . . . . . . 9 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
528, 50, 18, 51syl3anc 1318 . . . . . . . 8 (𝜑𝐻 ∈ V)
53 resexg 5362 . . . . . . . 8 (𝐻 ∈ V → (𝐻𝑊) ∈ V)
5452, 53syl 17 . . . . . . 7 (𝜑 → (𝐻𝑊) ∈ V)
5554ad2antrr 758 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) ∈ V)
563a1i 11 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5756imaeq2d 5385 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5820, 52, 28jca31 555 . . . . . . . . . . 11 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5958ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
6059, 32syl 17 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
6157, 60eqtrd 2644 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
6261, 35syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
6316, 62mpbid 221 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
64 f1oen3g 7857 . . . . . 6 (((𝐻𝑊) ∈ V ∧ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )) → 𝑊 ≈ (𝐹 supp 0 ))
6555, 63, 64syl2anc 691 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ≈ (𝐹 supp 0 ))
66 ssfi 8065 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
6749, 13, 66sylancr 694 . . . . . . 7 (𝜑𝑊 ∈ Fin)
6867ad2antrr 758 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
69 f1f1orn 6061 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
701, 69syl 17 . . . . . . . . . . 11 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
71 f1oen3g 7857 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
7252, 70, 71syl2anc 691 . . . . . . . . . 10 (𝜑 → (1...𝑀) ≈ ran 𝐻)
73 enfi 8061 . . . . . . . . . 10 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7472, 73syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7549, 74mpbii 222 . . . . . . . 8 (𝜑 → ran 𝐻 ∈ Fin)
76 ssfi 8065 . . . . . . . 8 ((ran 𝐻 ∈ Fin ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐹 supp 0 ) ∈ Fin)
7775, 27, 76syl2anc 691 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7877ad2antrr 758 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
79 hashen 12997 . . . . . 6 ((𝑊 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
8068, 78, 79syl2anc 691 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
8165, 80mpbird 246 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (#‘𝑊) = (#‘(𝐹 supp 0 )))
8281oveq2d 6565 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (1...(#‘𝑊)) = (1...(#‘(𝐹 supp 0 ))))
83 f1oeq2 6041 . . 3 ((1...(#‘𝑊)) = (1...(#‘(𝐹 supp 0 ))) → ((𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
8482, 83syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
8548, 84mpbid 221 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Fun wfun 5798  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549   supp csupp 7182  cen 7838  Fincfn 7841  1c1 9816   < clt 9953  cn 10897  ...cfz 12197  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  gsumval3lem2  18130
  Copyright terms: Public domain W3C validator