Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelrn Structured version   Visualization version   GIF version

Theorem fvelrn 6260
 Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem fvelrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
21anbi2d 736 . . . 4 (𝑥 = 𝐴 → ((Fun 𝐹𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹𝐴 ∈ dom 𝐹)))
3 fveq2 6103 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eleq1d 2672 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ran 𝐹 ↔ (𝐹𝐴) ∈ ran 𝐹))
52, 4imbi12d 333 . . 3 (𝑥 = 𝐴 → (((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)))
6 funfvop 6237 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
7 vex 3176 . . . . . 6 𝑥 ∈ V
8 opeq1 4340 . . . . . . 7 (𝑦 = 𝑥 → ⟨𝑦, (𝐹𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩)
98eleq1d 2672 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑦, (𝐹𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
107, 9spcev 3273 . . . . 5 (⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹 → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
116, 10syl 17 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
12 fvex 6113 . . . . 5 (𝐹𝑥) ∈ V
1312elrn2 5286 . . . 4 ((𝐹𝑥) ∈ ran 𝐹 ↔ ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
1411, 13sylibr 223 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
155, 14vtoclg 3239 . 2 (𝐴 ∈ dom 𝐹 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹))
1615anabsi7 856 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ⟨cop 4131  dom cdm 5038  ran crn 5039  Fun wfun 5798  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812 This theorem is referenced by:  nelrnfvne  6261  fnfvelrn  6264  eldmrexrn  6273  fvn0fvelrn  6335  funfvima  6396  elunirn  6413  rankwflemb  8539  dfac9  8841  fin1a2lem6  9110  gsumpropd2lem  17096  usgraedg3  25915  nbgraf1olem5  25974  usgrwlknloop  26093  usgra2wlkspthlem2  26148  nvnencycllem  26171  wlkiswwlk1  26218  usg2wlkonot  26410  usg2wotspth  26411  opfv  28828  nofv  31054  sltres  31061  bdayelon  31079  nodenselem3  31082  bj-elccinfty  32278  bj-minftyccb  32289  icoreunrn  32383  indexdom  32699  diaclN  35357  dia1elN  35361  docaclN  35431  dibclN  35469  dfac21  36654  gneispace  37452  cncmpmax  38214  icccncfext  38773  stoweidlem27  38920  stoweidlem29  38922  stoweidlem59  38952  fourierdlem20  39020  fourierdlem63  39062  fourierdlem76  39075  fourierdlem82  39081  fourierdlem93  39092  fourierdlem113  39112  fge0iccico  39263  sge0sn  39272  sge0tsms  39273  sge0cl  39274  sge0isum  39320  hoicvr  39438  afvelrn  39897  usgredg3  40443  ushgredgedga  40456  ushgredgedgaloop  40458  subgruhgredgd  40508  edginwlk  40839  iedginwlk  40841  suppdm  42094
 Copyright terms: Public domain W3C validator