MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelrn Structured version   Unicode version

Theorem fvelrn 6015
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)

Proof of Theorem fvelrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2539 . . . . 5  |-  ( x  =  A  ->  (
x  e.  dom  F  <->  A  e.  dom  F ) )
21anbi2d 703 . . . 4  |-  ( x  =  A  ->  (
( Fun  F  /\  x  e.  dom  F )  <-> 
( Fun  F  /\  A  e.  dom  F ) ) )
3 fveq2 5864 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eleq1d 2536 . . . 4  |-  ( x  =  A  ->  (
( F `  x
)  e.  ran  F  <->  ( F `  A )  e.  ran  F ) )
52, 4imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( ( Fun  F  /\  x  e.  dom  F )  ->  ( F `  x )  e.  ran  F )  <->  ( ( Fun 
F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) ) )
6 funfvop 5991 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
7 vex 3116 . . . . . 6  |-  x  e. 
_V
8 opeq1 4213 . . . . . . 7  |-  ( y  =  x  ->  <. y ,  ( F `  x ) >.  =  <. x ,  ( F `  x ) >. )
98eleq1d 2536 . . . . . 6  |-  ( y  =  x  ->  ( <. y ,  ( F `
 x ) >.  e.  F  <->  <. x ,  ( F `  x )
>.  e.  F ) )
107, 9spcev 3205 . . . . 5  |-  ( <.
x ,  ( F `
 x ) >.  e.  F  ->  E. y <. y ,  ( F `
 x ) >.  e.  F )
116, 10syl 16 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  E. y <. y ,  ( F `  x )
>.  e.  F )
12 fvex 5874 . . . . 5  |-  ( F `
 x )  e. 
_V
1312elrn2 5240 . . . 4  |-  ( ( F `  x )  e.  ran  F  <->  E. y <. y ,  ( F `
 x ) >.  e.  F )
1411, 13sylibr 212 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
155, 14vtoclg 3171 . 2  |-  ( A  e.  dom  F  -> 
( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F ) )
1615anabsi7 817 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   <.cop 4033   dom cdm 4999   ran crn 5000   Fun wfun 5580   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594
This theorem is referenced by:  fnfvelrn  6016  eldmrexrn  6025  fvn0fvelrn  6076  funfvima  6133  elunirn  6149  rankwflemb  8207  dfac9  8512  fin1a2lem6  8781  gsumpropd2lem  15818  bwthOLD  19677  usgraedg3  24062  nbgraf1olem5  24121  usgrnloop  24241  usgra2wlkspthlem2  24296  nvnencycllem  24319  wlkiswwlk1  24366  usg2wlkonot  24559  usg2wotspth  24560  opfv  27158  nofv  28994  sltres  29001  bdayelon  29017  nodenselem3  29020  indexdom  29828  dfac21  30616  cncmpmax  30985  icccncfext  31226  ditgeqiooicc  31278  stoweidlem27  31327  stoweidlem29  31329  stoweidlem59  31359  fourierdlem20  31427  fourierdlem63  31470  fourierdlem76  31483  fourierdlem82  31489  fourierdlem93  31500  fourierdlem113  31520  afvelrn  31720  bj-elccinfty  33689  bj-minftyccb  33700  diaclN  35847  dia1elN  35851  docaclN  35921  dibclN  35959
  Copyright terms: Public domain W3C validator