MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usg2wlkonot Structured version   Visualization version   GIF version

Theorem usg2wlkonot 26410
Description: A walk of length 2 between two vertices as ordered triple in an undirected simple graph. This theorem would also hold for undirected multigraphs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
Assertion
Ref Expression
usg2wlkonot ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))

Proof of Theorem usg2wlkonot
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrav 25867 . . 3 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
2 el2wlkonotot 26400 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐶𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
323adantr2 1214 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
41, 3sylan 487 . 2 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
5 vex 3176 . . . . . . . . . . . 12 𝑓 ∈ V
6 vex 3176 . . . . . . . . . . . 12 𝑝 ∈ V
75, 6pm3.2i 470 . . . . . . . . . . 11 (𝑓 ∈ V ∧ 𝑝 ∈ V)
8 is2wlk 26095 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑓 ∈ V ∧ 𝑝 ∈ V)) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)}))))
91, 7, 8sylancl 693 . . . . . . . . . 10 (𝑉 USGrph 𝐸 → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)}))))
10 preq12 4214 . . . . . . . . . . . . . . . . 17 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1)) → {𝐴, 𝐵} = {(𝑝‘0), (𝑝‘1)})
11103adant3 1074 . . . . . . . . . . . . . . . 16 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → {𝐴, 𝐵} = {(𝑝‘0), (𝑝‘1)})
1211eqeq2d 2620 . . . . . . . . . . . . . . 15 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ↔ (𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)}))
13 preq12 4214 . . . . . . . . . . . . . . . . 17 ((𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → {𝐵, 𝐶} = {(𝑝‘1), (𝑝‘2)})
14133adant1 1072 . . . . . . . . . . . . . . . 16 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → {𝐵, 𝐶} = {(𝑝‘1), (𝑝‘2)})
1514eqeq2d 2620 . . . . . . . . . . . . . . 15 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐸‘(𝑓‘1)) = {𝐵, 𝐶} ↔ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)}))
1612, 15anbi12d 743 . . . . . . . . . . . . . 14 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) ↔ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)})))
1716bicomd 212 . . . . . . . . . . . . 13 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)}) ↔ ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶})))
18173anbi3d 1397 . . . . . . . . . . . 12 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)})) ↔ (𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}))))
19 usgrafun 25878 . . . . . . . . . . . . . . . . . 18 (𝑉 USGrph 𝐸 → Fun 𝐸)
20 c0ex 9913 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
2120prid1 4241 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ {0, 1}
22 fzo0to2pr 12420 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^2) = {0, 1}
2321, 22eleqtrri 2687 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0..^2)
24 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:(0..^2)⟶dom 𝐸 ∧ 0 ∈ (0..^2)) → (𝑓‘0) ∈ dom 𝐸)
2523, 24mpan2 703 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:(0..^2)⟶dom 𝐸 → (𝑓‘0) ∈ dom 𝐸)
26 fvelrn 6260 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐸 ∧ (𝑓‘0) ∈ dom 𝐸) → (𝐸‘(𝑓‘0)) ∈ ran 𝐸)
2725, 26sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐸𝑓:(0..^2)⟶dom 𝐸) → (𝐸‘(𝑓‘0)) ∈ ran 𝐸)
28 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} → ((𝐸‘(𝑓‘0)) ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸))
2927, 28syl5ibcom 234 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐸𝑓:(0..^2)⟶dom 𝐸) → ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} ∈ ran 𝐸))
30 1ex 9914 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ V
3130prid2 4242 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ {0, 1}
3231, 22eleqtrri 2687 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ (0..^2)
33 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:(0..^2)⟶dom 𝐸 ∧ 1 ∈ (0..^2)) → (𝑓‘1) ∈ dom 𝐸)
3432, 33mpan2 703 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:(0..^2)⟶dom 𝐸 → (𝑓‘1) ∈ dom 𝐸)
35 fvelrn 6260 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐸 ∧ (𝑓‘1) ∈ dom 𝐸) → (𝐸‘(𝑓‘1)) ∈ ran 𝐸)
3634, 35sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐸𝑓:(0..^2)⟶dom 𝐸) → (𝐸‘(𝑓‘1)) ∈ ran 𝐸)
37 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 ((𝐸‘(𝑓‘1)) = {𝐵, 𝐶} → ((𝐸‘(𝑓‘1)) ∈ ran 𝐸 ↔ {𝐵, 𝐶} ∈ ran 𝐸))
3836, 37syl5ibcom 234 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐸𝑓:(0..^2)⟶dom 𝐸) → ((𝐸‘(𝑓‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} ∈ ran 𝐸))
3929, 38anim12d 584 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐸𝑓:(0..^2)⟶dom 𝐸) → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
4019, 39sylan 487 . . . . . . . . . . . . . . . . 17 ((𝑉 USGrph 𝐸𝑓:(0..^2)⟶dom 𝐸) → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
4140a1d 25 . . . . . . . . . . . . . . . 16 ((𝑉 USGrph 𝐸𝑓:(0..^2)⟶dom 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))
4241expcom 450 . . . . . . . . . . . . . . 15 (𝑓:(0..^2)⟶dom 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
4342com24 93 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟶dom 𝐸 → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
4443a1d 25 . . . . . . . . . . . . 13 (𝑓:(0..^2)⟶dom 𝐸 → (𝑝:(0...2)⟶𝑉 → (((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶}) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))))
45443imp 1249 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝑓‘1)) = {𝐵, 𝐶})) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))
4618, 45syl6bi 242 . . . . . . . . . . 11 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)})) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
4746com14 94 . . . . . . . . . 10 (𝑉 USGrph 𝐸 → ((𝑓:(0..^2)⟶dom 𝐸𝑝:(0...2)⟶𝑉 ∧ ((𝐸‘(𝑓‘0)) = {(𝑝‘0), (𝑝‘1)} ∧ (𝐸‘(𝑓‘1)) = {(𝑝‘1), (𝑝‘2)})) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
489, 47sylbid 229 . . . . . . . . 9 (𝑉 USGrph 𝐸 → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
4948com14 94 . . . . . . . 8 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))))
5049expdcom 454 . . . . . . 7 (𝑓(𝑉 Walks 𝐸)𝑝 → ((#‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))))
51503imp 1249 . . . . . 6 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))
5251com13 86 . . . . 5 (𝑉 USGrph 𝐸 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))
5352imp 444 . . . 4 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
5453exlimdvv 1849 . . 3 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
55 usg2wlk 26145 . . . . 5 ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
56553expib 1260 . . . 4 (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
5756adantr 480 . . 3 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))))
5854, 57impbid 201 . 2 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
594, 58bitrd 267 1 ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  {cpr 4127  cotp 4133   class class class wbr 4583  dom cdm 5038  ran crn 5039  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  ...cfz 12197  ..^cfzo 12334  #chash 12979   USGrph cusg 25859   Walks cwalk 26026   2WalksOnOt c2wlkonot 26382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-wlkon 26042  df-2wlkonot 26385
This theorem is referenced by:  usg2spthonot  26415  usg2spthonot0  26416  frg2woteu  26582  frg2woteqm  26586
  Copyright terms: Public domain W3C validator