Proof of Theorem usg2spthonot0
Step | Hyp | Ref
| Expression |
1 | | ne0i 3880 |
. . . . 5
⊢
(〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ≠ ∅) |
2 | | 2spontn0vne 26414 |
. . . . 5
⊢ ((𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ≠ ∅ → 𝐴 ≠ 𝐶) |
3 | 1, 2 | syl 17 |
. . . 4
⊢
(〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → 𝐴 ≠ 𝐶) |
4 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑉 USGrph 𝐸) |
5 | 4 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → 𝑉 USGrph 𝐸) |
6 | | 3simpb 1052 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
7 | 6 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
8 | 7 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
9 | | simpl 472 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → 𝐴 ≠ 𝐶) |
10 | | 2pthwlkonot 26412 |
. . . . . . . . . 10
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) = (𝐴(𝑉 2WalksOnOt 𝐸)𝐶)) |
11 | 5, 8, 9, 10 | syl3anc 1318 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) = (𝐴(𝑉 2WalksOnOt 𝐸)𝐶)) |
12 | 11 | eleq2d 2673 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶))) |
13 | | usgrav 25867 |
. . . . . . . . . . . 12
⊢ (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
14 | 13, 6 | anim12i 588 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
15 | 14 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
16 | | el2wlkonotot1 26401 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
18 | | df-3an 1033 |
. . . . . . . . 9
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) |
19 | 17, 18 | syl6bb 275 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
20 | 12, 19 | bitrd 267 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
21 | | simpll 786 |
. . . . . . . . . . . . 13
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝑆 = 𝐴) |
22 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → 𝑇 = 𝐶) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝑇 = 𝐶) |
24 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
25 | 21, 23, 24 | 3jca 1235 |
. . . . . . . . . . . 12
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶) → (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) |
26 | 25 | ex 449 |
. . . . . . . . . . 11
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (𝐴 ≠ 𝐶 → (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶))) |
27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → (𝐴 ≠ 𝐶 → (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶))) |
28 | 27 | com12 32 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐶 → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶))) |
29 | 28 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶))) |
30 | 5 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → 𝑉 USGrph 𝐸) |
31 | | simprrr 801 |
. . . . . . . . . . . . 13
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
32 | | eleq1 2676 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 = 𝐴 → (𝑆 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (𝑆 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
34 | | eleq1 2676 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 = 𝐶 → (𝑇 ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (𝑇 ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
36 | 33, 35 | 3anbi13d 1393 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
38 | 31, 37 | mpbird 246 |
. . . . . . . . . . . 12
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉)) |
39 | | usg2wlkonot 26410 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇) ↔ ({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸))) |
40 | 30, 38, 39 | syl2anc 691 |
. . . . . . . . . . 11
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇) ↔ ({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸))) |
41 | | preq1 4212 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 = 𝐴 → {𝑆, 𝐵} = {𝐴, 𝐵}) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → {𝑆, 𝐵} = {𝐴, 𝐵}) |
43 | 42 | eleq1d 2672 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ({𝑆, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
44 | | preq2 4213 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 = 𝐶 → {𝐵, 𝑇} = {𝐵, 𝐶}) |
45 | 44 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → {𝐵, 𝑇} = {𝐵, 𝐶}) |
46 | 45 | eleq1d 2672 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ({𝐵, 𝑇} ∈ ran 𝐸 ↔ {𝐵, 𝐶} ∈ ran 𝐸)) |
47 | 43, 46 | anbi12d 743 |
. . . . . . . . . . . . 13
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
48 | 47 | biimpd 218 |
. . . . . . . . . . . 12
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
49 | 48 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → (({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
50 | 40, 49 | sylbid 229 |
. . . . . . . . . 10
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ (𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
51 | 50 | impancom 455 |
. . . . . . . . 9
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
52 | 51 | com12 32 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
53 | 29, 52 | jcad 554 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))) |
54 | 20, 53 | sylbid 229 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))) |
55 | 54 | ex 449 |
. . . . 5
⊢ (𝐴 ≠ 𝐶 → ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))) |
56 | 55 | com23 84 |
. . . 4
⊢ (𝐴 ≠ 𝐶 → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))))) |
57 | 3, 56 | mpcom 37 |
. . 3
⊢
(〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))) |
58 | 57 | com12 32 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))) |
59 | | simpll 786 |
. . . . . . . 8
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) → 𝑉 USGrph 𝐸) |
60 | | eleq1 2676 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = 𝑆 → (𝐴 ∈ 𝑉 ↔ 𝑆 ∈ 𝑉)) |
61 | 60 | eqcoms 2618 |
. . . . . . . . . . . . . 14
⊢ (𝑆 = 𝐴 → (𝐴 ∈ 𝑉 ↔ 𝑆 ∈ 𝑉)) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (𝐴 ∈ 𝑉 ↔ 𝑆 ∈ 𝑉)) |
63 | | eleq1 2676 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 𝑇 → (𝐶 ∈ 𝑉 ↔ 𝑇 ∈ 𝑉)) |
64 | 63 | eqcoms 2618 |
. . . . . . . . . . . . . 14
⊢ (𝑇 = 𝐶 → (𝐶 ∈ 𝑉 ↔ 𝑇 ∈ 𝑉)) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → (𝐶 ∈ 𝑉 ↔ 𝑇 ∈ 𝑉)) |
66 | 62, 65 | 3anbi13d 1393 |
. . . . . . . . . . . 12
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉))) |
67 | 66 | biimpd 218 |
. . . . . . . . . . 11
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉))) |
68 | 67 | adantld 482 |
. . . . . . . . . 10
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) → ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉))) |
69 | 68 | 3adant3 1074 |
. . . . . . . . 9
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) → ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉))) |
70 | 69 | impcom 445 |
. . . . . . . 8
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) → (𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉)) |
71 | 59, 70, 39 | syl2anc 691 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇) ↔ ({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸))) |
72 | 47 | 3adant3 1074 |
. . . . . . . 8
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) → (({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
73 | 72 | adantl 481 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) → (({𝑆, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝑇} ∈ ran 𝐸) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
74 | 71, 73 | bitr2d 268 |
. . . . . 6
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶)) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ↔ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) |
75 | 74 | pm5.32da 671 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
76 | | df-3an 1033 |
. . . . . . . 8
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶)) |
77 | | ancom 465 |
. . . . . . . 8
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 𝐴 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶))) |
78 | 76, 77 | bitri 263 |
. . . . . . 7
⊢ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶))) |
79 | 78 | anbi1i 727 |
. . . . . 6
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ ((𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶)) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) |
80 | | anass 679 |
. . . . . 6
⊢ (((𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶)) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ (𝐴 ≠ 𝐶 ∧ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
81 | 18 | bicomi 213 |
. . . . . . 7
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) |
82 | 81 | anbi2i 726 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐶 ∧ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) ↔ (𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
83 | 79, 80, 82 | 3bitri 285 |
. . . . 5
⊢ (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ (𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
84 | 75, 83 | syl6bb 275 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))))) |
85 | 14, 16 | syl 17 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)))) |
86 | 85 | bicomd 212 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇)) ↔ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶))) |
87 | 86 | anbi2d 736 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ (𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝑆(𝑉 2WalksOnOt 𝐸)𝑇))) ↔ (𝐴 ≠ 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶)))) |
88 | 84, 87 | bitrd 267 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶)))) |
89 | | simpll 786 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → 𝑉 USGrph 𝐸) |
90 | 7 | adantr 480 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
91 | | simpr 476 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
92 | 10 | eqcomd 2616 |
. . . . . . 7
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) = (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)) |
93 | 89, 90, 91, 92 | syl3anc 1318 |
. . . . . 6
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) = (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)) |
94 | 93 | eleq2d 2673 |
. . . . 5
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) ↔ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶))) |
95 | 94 | biimpd 218 |
. . . 4
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐴 ≠ 𝐶) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶) → 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶))) |
96 | 95 | expimpd 627 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2WalksOnOt 𝐸)𝐶)) → 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶))) |
97 | 88, 96 | sylbid 229 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → 〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶))) |
98 | 58, 97 | impbid 201 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝑆, 𝐵, 𝑇〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ((𝑆 = 𝐴 ∧ 𝑇 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)))) |