Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppdm Structured version   Visualization version   GIF version

Theorem suppdm 42094
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
suppdm (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)

Proof of Theorem suppdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppval1 7188 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
21adantr 480 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
3 df-nel 2783 . . . . . 6 (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹)
4 fvelrn 6260 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
543ad2antl1 1216 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
6 eleq1 2676 . . . . . . . . 9 (𝑍 = (𝐹𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
76eqcoms 2618 . . . . . . . 8 ((𝐹𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
85, 7syl5ibrcom 236 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑍𝑍 ∈ ran 𝐹))
98necon3bd 2796 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
103, 9syl5bi 231 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
1110impancom 455 . . . 4 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ≠ 𝑍))
1211ralrimiv 2948 . . 3 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
13 rabid2 3096 . . 3 (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
1412, 13sylibr 223 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
152, 14eqtr4d 2647 1 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  {crab 2900  dom cdm 5038  ran crn 5039  Fun wfun 5798  cfv 5804  (class class class)co 6549   supp csupp 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-supp 7183
This theorem is referenced by:  elbigolo1  42149
  Copyright terms: Public domain W3C validator