Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ushgredgedgaloop Structured version   Visualization version   GIF version

Theorem ushgredgedgaloop 40458
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex and the set of loops at this vertex. (Contributed by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
ushgredgedgaloop.e 𝐸 = (Edg‘𝐺)
ushgredgedgaloop.i 𝐼 = (iEdg‘𝐺)
ushgredgedgaloop.v 𝑉 = (Vtx‘𝐺)
ushgredgedgaloop.a 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
ushgredgedgaloop.b 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
ushgredgedgaloop.f 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
Assertion
Ref Expression
ushgredgedgaloop ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖,𝑥   𝑒,𝐼,𝑖,𝑥   𝑒,𝑁,𝑖,𝑥   𝑒,𝑉,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑖)   𝐵(𝑥,𝑖)   𝐸(𝑥)   𝐹(𝑥,𝑒,𝑖)

Proof of Theorem ushgredgedgaloop
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 ushgredgedgaloop.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2ushgrf 25729 . . . 4 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
43adantr 480 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
5 ssrab2 3650 . . 3 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼
6 f1ores 6064 . . 3 ((𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
74, 5, 6sylancl 693 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
8 ushgredgedgaloop.f . . . . 5 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
9 ushgredgedgaloop.a . . . . . . 7 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
109a1i 11 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
11 eqidd 2611 . . . . . 6 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ 𝑥𝐴) → (𝐼𝑥) = (𝐼𝑥))
1210, 11mpteq12dva 4662 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑥𝐴 ↦ (𝐼𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
138, 12syl5eq 2656 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
14 f1f 6014 . . . . . . 7 (𝐼:dom 𝐼1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
153, 14syl 17 . . . . . 6 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
165a1i 11 . . . . . 6 (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼)
1715, 16feqresmpt 6160 . . . . 5 (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1817adantr 480 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1913, 18eqtr4d 2647 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
20 ushgruhgr 25735 . . . . . . . 8 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph )
21 eqid 2610 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2221uhgrfun 25732 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2320, 22syl 17 . . . . . . 7 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
242funeqi 5824 . . . . . . 7 (Fun 𝐼 ↔ Fun (iEdg‘𝐺))
2523, 24sylibr 223 . . . . . 6 (𝐺 ∈ USHGraph → Fun 𝐼)
2625adantr 480 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → Fun 𝐼)
27 dfimafn 6155 . . . . 5 ((Fun 𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
2826, 5, 27sylancl 693 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
29 fveq2 6103 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
3029eqeq1d 2612 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐼𝑖) = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
3130elrab 3331 . . . . . . . . 9 (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
32 simpl 472 . . . . . . . . . . . . . . 15 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼)
33 fvelrn 6260 . . . . . . . . . . . . . . . 16 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran 𝐼)
342eqcomi 2619 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = 𝐼
3534rneqi 5273 . . . . . . . . . . . . . . . 16 ran (iEdg‘𝐺) = ran 𝐼
3633, 35syl6eleqr 2699 . . . . . . . . . . . . . . 15 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
3726, 32, 36syl2an 493 . . . . . . . . . . . . . 14 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁})) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
38373adant3 1074 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
39 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑓 = (𝐼𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4039eqcoms 2618 . . . . . . . . . . . . . 14 ((𝐼𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
41403ad2ant3 1077 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4238, 41mpbird 246 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺))
43 ushgredgedgaloop.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
44 edgaval 25794 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
4543, 44syl5eq 2656 . . . . . . . . . . . . . . 15 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
4645eleq2d 2673 . . . . . . . . . . . . . 14 (𝐺 ∈ USHGraph → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4746adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
48473ad2ant1 1075 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4942, 48mpbird 246 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓𝐸)
50 eqeq1 2614 . . . . . . . . . . . . . . 15 ((𝐼𝑗) = 𝑓 → ((𝐼𝑗) = {𝑁} ↔ 𝑓 = {𝑁}))
5150biimpcd 238 . . . . . . . . . . . . . 14 ((𝐼𝑗) = {𝑁} → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5251adantl 481 . . . . . . . . . . . . 13 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5352a1i 11 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁})))
54533imp 1249 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 = {𝑁})
5549, 54jca 553 . . . . . . . . . 10 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 = {𝑁}))
56553exp 1256 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5731, 56syl5bi 231 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5857rexlimdv 3012 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁})))
59 funfn 5833 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
6059biimpi 205 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
6123, 60syl 17 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
62 fvelrnb 6153 . . . . . . . . . . . 12 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6361, 62syl 17 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6434dmeqi 5247 . . . . . . . . . . . . . . . . . . . . . 22 dom (iEdg‘𝐺) = dom 𝐼
6564eleq2i 2680 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼)
6665biimpi 205 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼)
6766adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼)
6867adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼)
6934fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((iEdg‘𝐺)‘𝑗) = (𝐼𝑗)
7069eqeq2i 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼𝑗))
7170biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼𝑗))
7271eqcoms 2618 . . . . . . . . . . . . . . . . . . . . . . 23 (((iEdg‘𝐺)‘𝑗) = 𝑓𝑓 = (𝐼𝑗))
7372eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
7473biimpcd 238 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7574adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7675adantld 482 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = {𝑁}))
7776imp 444 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = {𝑁})
7868, 77jca 553 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
7978, 31sylibr 223 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
8069eqeq1i 2615 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼𝑗) = 𝑓)
8180biimpi 205 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = 𝑓)
8281adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = 𝑓)
8382adantl 481 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = 𝑓)
8479, 83jca 553 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓))
8584ex 449 . . . . . . . . . . . . . 14 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓)))
8685reximdv2 2997 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
8786ex 449 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8887com23 84 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8963, 88sylbid 229 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
9046, 89sylbid 229 . . . . . . . . 9 (𝐺 ∈ USHGraph → (𝑓𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
9190impd 446 . . . . . . . 8 (𝐺 ∈ USHGraph → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9291adantr 480 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9358, 92impbid 201 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 ↔ (𝑓𝐸𝑓 = {𝑁})))
94 vex 3176 . . . . . . 7 𝑓 ∈ V
95 eqeq2 2621 . . . . . . . 8 (𝑒 = 𝑓 → ((𝐼𝑗) = 𝑒 ↔ (𝐼𝑗) = 𝑓))
9695rexbidv 3034 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9794, 96elab 3319 . . . . . 6 (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)
98 eqeq1 2614 . . . . . . 7 (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁}))
99 ushgredgedgaloop.b . . . . . . 7 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
10098, 99elrab2 3333 . . . . . 6 (𝑓𝐵 ↔ (𝑓𝐸𝑓 = {𝑁}))
10193, 97, 1003bitr4g 302 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ 𝑓𝐵))
102101eqrdv 2608 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} = 𝐵)
10328, 102eqtr2d 2645 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
10419, 10, 103f1oeq123d 6046 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐹:𝐴1-1-onto𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})))
1057, 104mpbird 246 1 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  {crab 2900  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722   USHGraph cushgr 25723  Edgcedga 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-uhgr 25724  df-ushgr 25725  df-edga 25793
This theorem is referenced by:  vtxdushgrfvedg  40705
  Copyright terms: Public domain W3C validator