Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   GIF version

Theorem sge0cl 39274
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x (𝜑𝑋𝑉)
sge0cl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0cl (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))

Proof of Theorem sge0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝐹 = ∅ → (Σ^𝐹) = (Σ^‘∅))
2 sge00 39269 . . . . . 6 ^‘∅) = 0
32a1i 11 . . . . 5 (𝐹 = ∅ → (Σ^‘∅) = 0)
41, 3eqtrd 2644 . . . 4 (𝐹 = ∅ → (Σ^𝐹) = 0)
5 0e0iccpnf 12154 . . . . 5 0 ∈ (0[,]+∞)
65a1i 11 . . . 4 (𝐹 = ∅ → 0 ∈ (0[,]+∞))
74, 6eqeltrd 2688 . . 3 (𝐹 = ∅ → (Σ^𝐹) ∈ (0[,]+∞))
87adantl 481 . 2 ((𝜑𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
9 sge0cl.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0cl.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 476 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 39266 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
15 pnfel0pnf 38601 . . . . . 6 +∞ ∈ (0[,]+∞)
1615a1i 11 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,]+∞))
1714, 16eqeltrd 2688 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
1817adantlr 747 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
19 simpll 786 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝜑)
20 neqne 2790 . . . . 5 𝐹 = ∅ → 𝐹 ≠ ∅)
2120ad2antlr 759 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹 ≠ ∅)
22 simpr 476 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
23 0xr 9965 . . . . . 6 0 ∈ ℝ*
2423a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ∈ ℝ*)
25 pnfxr 9971 . . . . . 6 +∞ ∈ ℝ*
2625a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → +∞ ∈ ℝ*)
279adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
2811adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
29 simpr 476 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
3028, 29fge0iccico 39263 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
3127, 30sge0reval 39265 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
32 elinel2 3762 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
3411ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
35 elinel1 3761 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
36 elpwi 4117 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
3837adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑥𝑋)
40 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑥)
4139, 40sseldd 3569 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
4234, 41ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
4342adantllr 751 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
44 nne 2786 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑦) ≠ +∞ ↔ (𝐹𝑦) = +∞)
4544biimpi 205 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) ≠ +∞ → (𝐹𝑦) = +∞)
4645eqcomd 2616 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑦) ≠ +∞ → +∞ = (𝐹𝑦))
4746adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ = (𝐹𝑦))
48 ffun 5961 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝑋⟶(0[,]+∞) → Fun 𝐹)
4911, 48syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
50493ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → Fun 𝐹)
51413impa 1251 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
52 fdm 5964 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
5311, 52syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝑋)
5453eqcomd 2616 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = dom 𝐹)
55543ad2ant1 1075 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
5651, 55eleqtrd 2690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
57 fvelrn 6260 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
5850, 56, 57syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
5958ad5ant134 1305 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ran 𝐹)
6047, 59eqeltrd 2688 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ ∈ ran 𝐹)
6129ad3antrrr 762 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
6260, 61condan 831 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
63 ge0xrre 38605 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
6443, 62, 63syl2anc 691 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6533, 64fsumrecl 14312 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6665ralrimiva 2949 . . . . . . . . . 10 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
67 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
6867rnmptss 6299 . . . . . . . . . 10 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
6966, 68syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
70 ressxr 9962 . . . . . . . . . 10 ℝ ⊆ ℝ*
7170a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ℝ ⊆ ℝ*)
7269, 71sstrd 3578 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
73 supxrcl 12017 . . . . . . . 8 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7472, 73syl 17 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7531, 74eqeltrd 2688 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7675adantlr 747 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7754adantr 480 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → 𝑋 = dom 𝐹)
78 neneq 2788 . . . . . . . . . . . 12 (𝐹 ≠ ∅ → ¬ 𝐹 = ∅)
7978adantl 481 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → ¬ 𝐹 = ∅)
80 frel 5963 . . . . . . . . . . . . . 14 (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹)
8111, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
8281adantr 480 . . . . . . . . . . . 12 ((𝜑𝐹 ≠ ∅) → Rel 𝐹)
83 reldm0 5264 . . . . . . . . . . . 12 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8482, 83syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8579, 84mtbid 313 . . . . . . . . . 10 ((𝜑𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅)
8685neqned 2789 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → dom 𝐹 ≠ ∅)
8777, 86eqnetrd 2849 . . . . . . . 8 ((𝜑𝐹 ≠ ∅) → 𝑋 ≠ ∅)
88 n0 3890 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑧 𝑧𝑋)
8987, 88sylib 207 . . . . . . 7 ((𝜑𝐹 ≠ ∅) → ∃𝑧 𝑧𝑋)
9089adantr 480 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ∃𝑧 𝑧𝑋)
9123a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ∈ ℝ*)
9211ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
9392adantlr 747 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
94 nne 2786 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑧) ≠ +∞ ↔ (𝐹𝑧) = +∞)
9594biimpi 205 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑧) ≠ +∞ → (𝐹𝑧) = +∞)
9695eqcomd 2616 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑧) ≠ +∞ → +∞ = (𝐹𝑧))
9796adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ = (𝐹𝑧))
9811adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝐹:𝑋⟶(0[,]+∞))
9998, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → Fun 𝐹)
100 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑧𝑋)
10154adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑋 = dom 𝐹)
102100, 101eleqtrd 2690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑧 ∈ dom 𝐹)
103 fvelrn 6260 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ran 𝐹)
10499, 102, 103syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
105104adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
106105adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ran 𝐹)
10797, 106eqeltrd 2688 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ ∈ ran 𝐹)
10829ad2antrr 758 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
109107, 108condan 831 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ +∞)
110 ge0xrre 38605 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (0[,]+∞) ∧ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ℝ)
11193, 109, 110syl2anc 691 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
112111rexrd 9968 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ*)
11375adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (Σ^𝐹) ∈ ℝ*)
11423a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 0 ∈ ℝ*)
11525a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → +∞ ∈ ℝ*)
116 iccgelb 12101 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑧))
117114, 115, 92, 116syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 0 ≤ (𝐹𝑧))
118117adantlr 747 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (𝐹𝑧))
11972adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
120 snelpwi 4839 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
121 snfi 7923 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ Fin
122121a1i 11 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ Fin)
123120, 122elind 3760 . . . . . . . . . . . . . . 15 (𝑧𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
124123adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
125 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 𝑧𝑋)
126111recnd 9947 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
127 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
128127sumsn 14319 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ (𝐹𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
129125, 126, 128syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
130129eqcomd 2616 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
131 sumeq1 14267 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑧} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
132131eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑥 = {𝑧} → ((𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦) ↔ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)))
133132rspcev 3282 . . . . . . . . . . . . . 14 (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
134124, 130, 133syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
13567elrnmpt 5293 . . . . . . . . . . . . . 14 ((𝐹𝑧) ∈ (0[,]+∞) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
13693, 135syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
137134, 136mpbird 246 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
138 supxrub 12026 . . . . . . . . . . . 12 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
139119, 137, 138syl2anc 691 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
14031eqcomd 2616 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
141140adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
142139, 141breqtrd 4609 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ (Σ^𝐹))
14391, 112, 113, 118, 142xrletrd 11869 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (Σ^𝐹))
144143ex 449 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
145144adantlr 747 . . . . . . 7 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
146145exlimdv 1848 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (∃𝑧 𝑧𝑋 → 0 ≤ (Σ^𝐹)))
14790, 146mpd 15 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ≤ (Σ^𝐹))
148 pnfge 11840 . . . . . . 7 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
14975, 148syl 17 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
150149adantlr 747 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
15124, 26, 76, 147, 150eliccxrd 38600 . . . 4 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15219, 21, 22, 151syl21anc 1317 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15318, 152pm2.61dan 828 . 2 ((𝜑 ∧ ¬ 𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
1548, 153pm2.61dan 828 1 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  Rel wrel 5043  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cc 9813  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  sge0ge0  39277  sge0xrcl  39278  sge0split  39302  sge0iunmptlemre  39308  sge0iunmpt  39311  sge0nemnf  39313  sge0clmpt  39318  sge0isum  39320  psmeasure  39364  ovnsupge0  39447  ovnsubaddlem1  39460  sge0hsphoire  39479  hoidmvlelem1  39485  hspmbllem2  39517
  Copyright terms: Public domain W3C validator