Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltres Structured version   Visualization version   GIF version

Theorem sltres 31061
Description: If the restrictions of two surreals to a given ordinal obey surreal less than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltres ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))

Proof of Theorem sltres
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noreson 31057 . . . . . . 7 ((𝐴 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
213adant2 1073 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴𝑋) ∈ No )
3 noreson 31057 . . . . . . 7 ((𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
433adant1 1072 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐵𝑋) ∈ No )
5 sltintdifex 31060 . . . . . . 7 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V))
6 onintrab 6893 . . . . . . 7 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ V ↔ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
75, 6syl6ib 240 . . . . . 6 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
82, 4, 7syl2anc 691 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On))
98imp 444 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On)
10 simpl3 1059 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝑋 ∈ On)
11 sltval2 31053 . . . . . . . . . . . 12 (((𝐴𝑋) ∈ No ∧ (𝐵𝑋) ∈ No ) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
122, 4, 11syl2anc 691 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) ↔ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
13 fvex 6113 . . . . . . . . . . . . 13 ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
14 fvex 6113 . . . . . . . . . . . . 13 ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
1513, 14brtp 30892 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)))
16 1n0 7462 . . . . . . . . . . . . . . . . . 18 1𝑜 ≠ ∅
1716neii 2784 . . . . . . . . . . . . . . . . 17 ¬ 1𝑜 = ∅
18 eqeq1 2614 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 1𝑜 = ∅))
1917, 18mtbiri 316 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
20 ndmfv 6128 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
2119, 20nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2221adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2322orcd 406 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
2421adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
2524orcd 406 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
26 2on 7455 . . . . . . . . . . . . . . . . . . . . 21 2𝑜 ∈ On
2726elexi 3186 . . . . . . . . . . . . . . . . . . . 20 2𝑜 ∈ V
2827prid2 4242 . . . . . . . . . . . . . . . . . . 19 2𝑜 ∈ {1𝑜, 2𝑜}
2928nosgnn0i 31056 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2𝑜
3029neii 2784 . . . . . . . . . . . . . . . . 17 ¬ ∅ = 2𝑜
31 eqeq1 2614 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ 2𝑜 = ∅))
32 eqcom 2617 . . . . . . . . . . . . . . . . . 18 (2𝑜 = ∅ ↔ ∅ = 2𝑜)
3331, 32syl6bb 275 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ↔ ∅ = 2𝑜))
3430, 33mtbiri 316 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
35 ndmfv 6128 . . . . . . . . . . . . . . . 16 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
3634, 35nsyl2 141 . . . . . . . . . . . . . . 15 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3736adantl 481 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
3837olcd 407 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
3923, 25, 383jaoi 1383 . . . . . . . . . . . 12 (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4015, 39sylbi 206 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
4112, 40syl6bi 242 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))))
4241imp 444 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
43 dmres 5339 . . . . . . . . . . . 12 dom (𝐴𝑋) = (𝑋 ∩ dom 𝐴)
4443elin2 3763 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
4544simplbi 475 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
46 dmres 5339 . . . . . . . . . . . 12 dom (𝐵𝑋) = (𝑋 ∩ dom 𝐵)
4746elin2 3763 . . . . . . . . . . 11 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) ↔ ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
4847simplbi 475 . . . . . . . . . 10 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
4945, 48jaoi 393 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) ∨ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
5042, 49syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
51 onelss 5683 . . . . . . . 8 (𝑋 ∈ On → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋))
5210, 50, 51sylc 63 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑋)
5352sselda 3568 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦𝑋)
54 onelon 5665 . . . . . . . . 9 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
559, 54sylan 487 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → 𝑦 ∈ On)
56 intss1 4427 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦)
57 ontri1 5674 . . . . . . . . . . . . 13 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ⊆ 𝑦 ↔ ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5856, 57syl5ib 233 . . . . . . . . . . . 12 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
5958con2d 128 . . . . . . . . . . 11 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
609, 59sylan 487 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 ∈ On) → (𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6160impancom 455 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝑦 ∈ On → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6255, 61mpd 15 . . . . . . . 8 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})
63 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐴𝑋)‘𝑎) = ((𝐴𝑋)‘𝑦))
64 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝐵𝑋)‘𝑎) = ((𝐵𝑋)‘𝑦))
6563, 64neeq12d 2843 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎) ↔ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6665elrab 3331 . . . . . . . . . 10 (𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ↔ (𝑦 ∈ On ∧ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6766simplbi2 653 . . . . . . . . 9 (𝑦 ∈ On → (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) → 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
6867con3d 147 . . . . . . . 8 (𝑦 ∈ On → (¬ 𝑦 ∈ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦)))
6955, 62, 68sylc 63 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
70 df-ne 2782 . . . . . . . 8 (((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
7170con2bii 346 . . . . . . 7 (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ ¬ ((𝐴𝑋)‘𝑦) ≠ ((𝐵𝑋)‘𝑦))
7269, 71sylibr 223 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
73 fvres 6117 . . . . . . . 8 (𝑦𝑋 → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
74 fvres 6117 . . . . . . . 8 (𝑦𝑋 → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
7573, 74eqeq12d 2625 . . . . . . 7 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
7675biimpd 218 . . . . . 6 (𝑦𝑋 → (((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦) → (𝐴𝑦) = (𝐵𝑦)))
7753, 72, 76sylc 63 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) ∧ 𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
7877ralrimiva 2949 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦))
79 fvresval 30911 . . . . . . . . . . . . . . 15 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8079ori 389 . . . . . . . . . . . . . 14 (¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
8119, 80nsyl2 141 . . . . . . . . . . . . 13 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
8281eqcomd 2616 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
83 eqeq2 2621 . . . . . . . . . . . 12 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜))
8482, 83mpbid 221 . . . . . . . . . . 11 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜)
8584adantr 480 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜)
8685a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜))
8721ad2antrl 760 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
8887, 45syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
89 nofun 31046 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → Fun (𝐵𝑋))
90 fvelrn 6260 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐵𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋))
9190ex 449 . . . . . . . . . . . . . . . . . 18 (Fun (𝐵𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋)))
93 norn 31048 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑋) ∈ No → ran (𝐵𝑋) ⊆ {1𝑜, 2𝑜})
9493sseld 3567 . . . . . . . . . . . . . . . . 17 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜}))
9592, 94syld 46 . . . . . . . . . . . . . . . 16 ((𝐵𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜}))
96 nosgnn0 31055 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ {1𝑜, 2𝑜}
97 eleq1 2676 . . . . . . . . . . . . . . . . 17 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜} ↔ ∅ ∈ {1𝑜, 2𝑜}))
9896, 97mtbiri 316 . . . . . . . . . . . . . . . 16 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜})
9995, 98nsyli 154 . . . . . . . . . . . . . . 15 ((𝐵𝑋) ∈ No → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
1004, 99syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
101100imp 444 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
102101adantrl 748 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
10347simplbi2 653 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋)))
104103con3d 147 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵))
10588, 102, 104sylc 63 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵)
106 ndmfv 6128 . . . . . . . . . . 11 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐵 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
107105, 106syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
108107ex 449 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
10986, 108jcad 554 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)))
110 fvresval 30911 . . . . . . . . . . . . . 14 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∨ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
111110ori 389 . . . . . . . . . . . . 13 (¬ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
11234, 111nsyl2 141 . . . . . . . . . . . 12 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
113112eqcomd 2616 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
114 eqeq2 2621 . . . . . . . . . . 11 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → ((𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜))
115113, 114mpbid 221 . . . . . . . . . 10 (((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜 → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)
11684, 115anim12i 588 . . . . . . . . 9 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜))
117116a1i 11 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)))
11836ad2antll 761 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐵𝑋))
119118, 48syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋)
120 nofun 31046 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → Fun (𝐴𝑋))
121 fvelrn 6260 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝐴𝑋) ∧ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋))
122121ex 449 . . . . . . . . . . . . . . . . . 18 (Fun (𝐴𝑋) → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
123120, 122syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋)))
124 norn 31048 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑋) ∈ No → ran (𝐴𝑋) ⊆ {1𝑜, 2𝑜})
125124sseld 3567 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ ran (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜}))
126123, 125syld 46 . . . . . . . . . . . . . . . 16 ((𝐴𝑋) ∈ No → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜}))
127 eleq1 2676 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜} ↔ ∅ ∈ {1𝑜, 2𝑜}))
12896, 127mtbiri 316 . . . . . . . . . . . . . . . 16 (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ {1𝑜, 2𝑜})
129126, 128nsyli 154 . . . . . . . . . . . . . . 15 ((𝐴𝑋) ∈ No → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
1302, 129syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
131130imp 444 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
132131adantrr 749 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋))
13344simplbi2 653 . . . . . . . . . . . . 13 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋)))
134133con3d 147 . . . . . . . . . . . 12 ( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ 𝑋 → (¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom (𝐴𝑋) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
135119, 132, 134sylc 63 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴)
136135ex 449 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ¬ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴))
137 ndmfv 6128 . . . . . . . . . 10 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ dom 𝐴 → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅)
138136, 137syl6 34 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅))
139115adantl 481 . . . . . . . . . 10 ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)
140139a1i 11 . . . . . . . . 9 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜))
141138, 140jcad 554 . . . . . . . 8 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) → ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)))
142109, 117, 1413orim123d 1399 . . . . . . 7 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) ∨ (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)) → (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜))))
143 fvex 6113 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
144 fvex 6113 . . . . . . . 8 (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ∈ V
145143, 144brtp 30892 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) ↔ (((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 1𝑜 ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜) ∨ ((𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) = 2𝑜)))
146142, 15, 1453imtr4g 284 . . . . . 6 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (((𝐴𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} ((𝐵𝑋)‘ {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
14712, 146sylbid 229 . . . . 5 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
148147imp 444 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
149 raleq 3115 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦)))
150 fveq2 6103 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
151 fveq2 6103 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))
152150, 151breq12d 4596 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)})))
153149, 152anbi12d 743 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))))
154153rspcev 3282 . . . 4 (( {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)} (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑎 ∈ On ∣ ((𝐴𝑋)‘𝑎) ≠ ((𝐵𝑋)‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)))
1559, 78, 148, 154syl12anc 1316 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥)))
156 sltval 31044 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
1571563adant3 1074 . . . 4 ((𝐴 No 𝐵 No 𝑋 ∈ On) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
158157adantr 480 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵𝑥))))
159155, 158mpbird 246 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ (𝐴𝑋) <s (𝐵𝑋)) → 𝐴 <s 𝐵)
160159ex 449 1 ((𝐴 No 𝐵 No 𝑋 ∈ On) → ((𝐴𝑋) <s (𝐵𝑋) → 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  {cpr 4127  {ctp 4129  cop 4131   cint 4410   class class class wbr 4583  dom cdm 5038  ran crn 5039  cres 5040  Oncon0 5640  Fun wfun 5798  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441   No csur 31037   <s cslt 31038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-slt 31041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator