MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Visualization version   GIF version

Theorem gsumpropd2lem 17096
Description: Lemma for gsumpropd2 17097. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
gsumprop2dlem.1 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
gsumprop2dlem.2 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
Assertion
Ref Expression
gsumpropd2lem (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑡,𝑠,𝐹   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2lem
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
21adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.e . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2612 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
53oveqrspc2v 6572 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
65oveqrspc2v 6572 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
76ancom2s 840 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
87eqeq1d 2612 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
94, 8anbi12d 743 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
109anassrs 678 . . . . . 6 (((𝜑𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
112, 10raleqbidva 3131 . . . . 5 ((𝜑𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
121, 11rabeqbidva 3169 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
1312sseq2d 3596 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
14 eqidd 2611 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
1514, 1, 3grpidpropd 17084 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
16 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
17 gsumpropd2.r . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1817ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
19 gsumpropd2.n . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐹)
2019ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
21 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
22 simplrr 797 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
2321, 22eleqtrrd 2691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
24 fvelrn 6260 . . . . . . . . . . . . 13 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
2520, 23, 24syl2anc 691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
2618, 25sseldd 3569 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
27 gsumpropd2.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
2827adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
293adantlr 747 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
3016, 26, 28, 29seqfeq4 12712 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3130eqeq2d 2620 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3231anassrs 678 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3332pm5.32da 671 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3433rexbidva 3031 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3534exbidv 1837 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635iotabidv 5789 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3712difeq2d 3690 . . . . . . . . . . . . . . 15 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
3837imaeq2d 5385 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
4138, 39, 403eqtr4g 2669 . . . . . . . . . . . . 13 (𝜑𝐴 = 𝐵)
4241fveq2d 6107 . . . . . . . . . . . 12 (𝜑 → (#‘𝐴) = (#‘𝐵))
4342fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)))
45 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → (#‘𝐵) ∈ (ℤ‘1))
4617ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺))
47 f1ofun 6052 . . . . . . . . . . . . . . . 16 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Fun 𝑓)
4847ad3antlr 763 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → Fun 𝑓)
49 simpr 476 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ (1...(#‘𝐵)))
50 f1odm 6054 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(#‘𝐴)))
5150ad3antlr 763 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → dom 𝑓 = (1...(#‘𝐴)))
5242oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(#‘𝐴)) = (1...(#‘𝐵)))
5352ad3antrrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (1...(#‘𝐴)) = (1...(#‘𝐵)))
5451, 53eqtrd 2644 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → dom 𝑓 = (1...(#‘𝐵)))
5549, 54eleqtrrd 2691 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ dom 𝑓)
56 fvco 6184 . . . . . . . . . . . . . . 15 ((Fun 𝑓𝑎 ∈ dom 𝑓) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5748, 55, 56syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5819ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → Fun 𝐹)
59 difpreima 6251 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐹 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6019, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6139, 60syl5eq 2656 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
62 difss 3699 . . . . . . . . . . . . . . . . . . 19 ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ⊆ (𝐹 “ V)
6361, 62syl6eqss 3618 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (𝐹 “ V))
64 dfdm4 5238 . . . . . . . . . . . . . . . . . . 19 dom 𝐹 = ran 𝐹
65 dfrn4 5513 . . . . . . . . . . . . . . . . . . 19 ran 𝐹 = (𝐹 “ V)
6664, 65eqtri 2632 . . . . . . . . . . . . . . . . . 18 dom 𝐹 = (𝐹 “ V)
6763, 66syl6sseqr 3615 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ dom 𝐹)
6867ad3antrrr 762 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝐴 ⊆ dom 𝐹)
69 f1of 6050 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
7069ad3antlr 763 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑓:(1...(#‘𝐴))⟶𝐴)
7149, 53eleqtrrd 2691 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ (1...(#‘𝐴)))
7270, 71ffvelrnd 6268 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝑓𝑎) ∈ 𝐴)
7368, 72sseldd 3569 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝑓𝑎) ∈ dom 𝐹)
74 fvelrn 6260 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ (𝑓𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7558, 73, 74syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7657, 75eqeltrd 2688 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ ran 𝐹)
7746, 76sseldd 3569 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ (Base‘𝐺))
78 simpll 786 . . . . . . . . . . . . 13 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → 𝜑)
7927caovclg 6724 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8078, 79sylan 487 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8178, 5sylan 487 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
8245, 77, 80, 81seqfeq4 12712 . . . . . . . . . . 11 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
83 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ (ℤ‘1))
84 1z 11284 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
85 seqfn 12675 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1))
86 fndm 5904 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1))
8784, 85, 86mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1)
8887eleq2i 2680 . . . . . . . . . . . . . . 15 ((#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) ↔ (#‘𝐵) ∈ (ℤ‘1))
8983, 88sylnibr 318 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)))
90 ndmfv 6128 . . . . . . . . . . . . . 14 (¬ (#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = ∅)
92 seqfn 12675 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1))
93 fndm 5904 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1))
9484, 92, 93mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1)
9594eleq2i 2680 . . . . . . . . . . . . . . 15 ((#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) ↔ (#‘𝐵) ∈ (ℤ‘1))
9683, 95sylnibr 318 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)))
97 ndmfv 6128 . . . . . . . . . . . . . 14 (¬ (#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) → (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9896, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9991, 98eqtr4d 2647 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10099adantlr 747 . . . . . . . . . . 11 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10182, 100pm2.61dan 828 . . . . . . . . . 10 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10244, 101eqtrd 2644 . . . . . . . . 9 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
103102eqeq2d 2620 . . . . . . . 8 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))))
104103pm5.32da 671 . . . . . . 7 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
105 f1oeq2 6041 . . . . . . . . . 10 ((1...(#‘𝐴)) = (1...(#‘𝐵)) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐴))
10652, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐴))
107 f1oeq3 6042 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑓:(1...(#‘𝐵))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
10841, 107syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(#‘𝐵))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
109106, 108bitrd 267 . . . . . . . 8 (𝜑 → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
110109anbi1d 737 . . . . . . 7 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))) ↔ (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
111104, 110bitrd 267 . . . . . 6 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
112111exbidv 1837 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ ∃𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
113112iotabidv 5789 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))) = (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
11436, 113ifeq12d 4056 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))))))
11513, 15, 114ifbieq12d 4063 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))))
116 eqid 2610 . . 3 (Base‘𝐺) = (Base‘𝐺)
117 eqid 2610 . . 3 (0g𝐺) = (0g𝐺)
118 eqid 2610 . . 3 (+g𝐺) = (+g𝐺)
119 eqid 2610 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
12039a1i 11 . . 3 (𝜑𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
121 gsumpropd2.g . . 3 (𝜑𝐺𝑊)
122 gsumpropd2.f . . 3 (𝜑𝐹𝑉)
123 eqidd 2611 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
124116, 117, 118, 119, 120, 121, 122, 123gsumvalx 17093 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))))))
125 eqid 2610 . . 3 (Base‘𝐻) = (Base‘𝐻)
126 eqid 2610 . . 3 (0g𝐻) = (0g𝐻)
127 eqid 2610 . . 3 (+g𝐻) = (+g𝐻)
128 eqid 2610 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
12940a1i 11 . . 3 (𝜑𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
130 gsumpropd2.h . . 3 (𝜑𝐻𝑋)
131125, 126, 127, 128, 129, 130, 122, 123gsumvalx 17093 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))))
132115, 124, 1313eqtr4d 2654 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  cio 5766  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1c1 9816  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-0g 15925  df-gsum 15926
This theorem is referenced by:  gsumpropd2  17097
  Copyright terms: Public domain W3C validator