MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Unicode version

Theorem gsumpropd2lem 16026
Description: Lemma for gsumpropd2 16027 (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f  |-  ( ph  ->  F  e.  V )
gsumpropd2.g  |-  ( ph  ->  G  e.  W )
gsumpropd2.h  |-  ( ph  ->  H  e.  X )
gsumpropd2.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd2.c  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
gsumpropd2.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsumpropd2.n  |-  ( ph  ->  Fun  F )
gsumpropd2.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
gsumprop2dlem.1  |-  A  =  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )
gsumprop2dlem.2  |-  B  =  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
Assertion
Ref Expression
gsumpropd2lem  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    t, s, F    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    A( t, s)    B( t, s)    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsumpropd2lem
Dummy variables  a 
b  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
21adantr 465 . . . . . 6  |-  ( (
ph  /\  s  e.  ( Base `  G )
)  ->  ( Base `  G )  =  (
Base `  H )
)
3 gsumpropd2.e . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
43eqeq1d 2459 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
( s ( +g  `  G ) t )  =  t  <->  ( s
( +g  `  H ) t )  =  t ) )
53oveqrspc2v 6319 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
65oveqrspc2v 6319 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  ( Base `  G
)  /\  s  e.  ( Base `  G )
) )  ->  (
t ( +g  `  G
) s )  =  ( t ( +g  `  H ) s ) )
76ancom2s 802 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
t ( +g  `  G
) s )  =  ( t ( +g  `  H ) s ) )
87eqeq1d 2459 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
( t ( +g  `  G ) s )  =  t  <->  ( t
( +g  `  H ) s )  =  t ) )
94, 8anbi12d 710 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t )  <->  ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
109anassrs 648 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( Base `  G
) )  /\  t  e.  ( Base `  G
) )  ->  (
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t )  <->  ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
112, 10raleqbidva 3070 . . . . 5  |-  ( (
ph  /\  s  e.  ( Base `  G )
)  ->  ( A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t )  <->  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
121, 11rabeqbidva 3105 . . . 4  |-  ( ph  ->  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }  =  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } )
1312sseq2d 3527 . . 3  |-  ( ph  ->  ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  <->  ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
14 eqidd 2458 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
1514, 1, 3grpidpropd 16014 . . 3  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
16 simprl 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  n  e.  ( ZZ>= `  m )
)
17 gsumpropd2.r . . . . . . . . . . . . 13  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
1817ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ran  F  C_  ( Base `  G )
)
19 gsumpropd2.n . . . . . . . . . . . . . 14  |-  ( ph  ->  Fun  F )
2019ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  Fun  F )
21 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  s  e.  ( m ... n
) )
22 simplrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  dom  F  =  ( m ... n
) )
2321, 22eleqtrrd 2548 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  s  e.  dom  F )
24 fvelrn 6025 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  s  e.  dom  F )  -> 
( F `  s
)  e.  ran  F
)
2520, 23, 24syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ( F `  s )  e.  ran  F )
2618, 25sseldd 3500 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  s  e.  ( m ... n ) )  ->  ( F `  s )  e.  (
Base `  G )
)
27 gsumpropd2.c . . . . . . . . . . . 12  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
2827adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
293adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
3016, 26, 28, 29seqfeq4 12158 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  (  seq m ( ( +g  `  G ) ,  F
) `  n )  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) )
3130eqeq2d 2471 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  m )  /\  dom  F  =  ( m ... n ) ) )  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )  <->  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) )
3231anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( ZZ>= `  m )
)  /\  dom  F  =  ( m ... n
) )  ->  (
x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )  <->  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) )
3332pm5.32da 641 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  m )
)  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  H
) ,  F ) `
 n ) ) ) )
3433rexbidva 2965 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
3534exbidv 1715 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
3635iotabidv 5578 . . . 4  |-  ( ph  ->  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  =  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
3712difeq2d 3618 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } )  =  ( _V  \  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ) )
3837imaeq2d 5347 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14  |-  A  =  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14  |-  B  =  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
4138, 39, 403eqtr4g 2523 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  B )
4241fveq2d 5876 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  A
)  =  ( # `  B ) )
4342fveq2d 5876 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  A
) )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) ) )
4443adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  f :
( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) )  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
45 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  ( # `  B
)  e.  ( ZZ>= ` 
1 ) )
4617ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ran  F  C_  ( Base `  G )
)
47 f1ofun 5824 . . . . . . . . . . . . . . . 16  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  Fun  f )
4847ad3antlr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  Fun  f )
49 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  a  e.  ( 1 ... ( # `
 B ) ) )
50 f1odm 5826 . . . . . . . . . . . . . . . . . 18  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  dom  f  =  ( 1 ... ( # `
 A ) ) )
5150ad3antlr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  dom  f  =  ( 1 ... ( # `
 A ) ) )
5242oveq2d 6312 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... ( # `
 A ) )  =  ( 1 ... ( # `  B
) ) )
5352ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( 1 ... ( # `  A
) )  =  ( 1 ... ( # `  B ) ) )
5451, 53eqtrd 2498 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  dom  f  =  ( 1 ... ( # `
 B ) ) )
5549, 54eleqtrrd 2548 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  a  e.  dom  f )
56 fvco 5949 . . . . . . . . . . . . . . 15  |-  ( ( Fun  f  /\  a  e.  dom  f )  -> 
( ( F  o.  f ) `  a
)  =  ( F `
 ( f `  a ) ) )
5748, 55, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( ( F  o.  f ) `  a )  =  ( F `  ( f `
 a ) ) )
5819ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  Fun  F )
59 difpreima 6016 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Fun 
F  ->  ( `' F " ( _V  \  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ) )  =  ( ( `' F " _V )  \  ( `' F " { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ) ) )
6019, 59syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( ( `' F " _V )  \  ( `' F " { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ) ) )
6139, 60syl5eq 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  =  ( ( `' F " _V )  \  ( `' F " { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ) ) )
62 difss 3627 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' F " _V )  \  ( `' F " { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ) ) 
C_  ( `' F " _V )
6361, 62syl6eqss 3549 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  ( `' F " _V ) )
64 dfdm4 5205 . . . . . . . . . . . . . . . . . . 19  |-  dom  F  =  ran  `' F
65 dfrn4 5473 . . . . . . . . . . . . . . . . . . 19  |-  ran  `' F  =  ( `' F " _V )
6664, 65eqtri 2486 . . . . . . . . . . . . . . . . . 18  |-  dom  F  =  ( `' F " _V )
6763, 66syl6sseqr 3546 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  C_  dom  F )
6867ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  A  C_  dom  F )
69 f1of 5822 . . . . . . . . . . . . . . . . . 18  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
7069ad3antlr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  f :
( 1 ... ( # `
 A ) ) --> A )
7149, 53eleqtrrd 2548 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  a  e.  ( 1 ... ( # `
 A ) ) )
7270, 71ffvelrnd 6033 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( f `  a )  e.  A
)
7368, 72sseldd 3500 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( f `  a )  e.  dom  F )
74 fvelrn 6025 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  (
f `  a )  e.  dom  F )  -> 
( F `  (
f `  a )
)  e.  ran  F
)
7558, 73, 74syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( F `  ( f `  a
) )  e.  ran  F )
7657, 75eqeltrd 2545 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( ( F  o.  f ) `  a )  e.  ran  F )
7746, 76sseldd 3500 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  a  e.  ( 1 ... ( # `
 B ) ) )  ->  ( ( F  o.  f ) `  a )  e.  (
Base `  G )
)
78 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  ph )
7927caovclg 6466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  e.  ( Base `  G
) )
8078, 79sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  e.  ( Base `  G
) )
8178, 5sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
8245, 77, 80, 81seqfeq4 12158 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
83 simpr 461 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)
84 1z 10915 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
85 seqfn 12121 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ZZ  ->  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  Fn  ( ZZ>= ` 
1 ) )
86 fndm 5686 . . . . . . . . . . . . . . . . 17  |-  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  Fn  ( ZZ>= ` 
1 )  ->  dom  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  =  ( ZZ>= ` 
1 ) )
8784, 85, 86mp2b 10 . . . . . . . . . . . . . . . 16  |-  dom  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  =  ( ZZ>= ` 
1 )
8887eleq2i 2535 . . . . . . . . . . . . . . 15  |-  ( (
# `  B )  e.  dom  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) )  <-> 
( # `  B )  e.  ( ZZ>= `  1
) )
8983, 88sylnibr 305 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  -.  ( # `
 B )  e. 
dom  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) )
90 ndmfv 5896 . . . . . . . . . . . . . 14  |-  ( -.  ( # `  B
)  e.  dom  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (/) )
9189, 90syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (/) )
92 seqfn 12121 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ZZ  ->  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) )  Fn  ( ZZ>= ` 
1 ) )
93 fndm 5686 . . . . . . . . . . . . . . . . 17  |-  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) )  Fn  ( ZZ>= ` 
1 )  ->  dom  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) )  =  ( ZZ>= ` 
1 ) )
9484, 92, 93mp2b 10 . . . . . . . . . . . . . . . 16  |-  dom  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) )  =  ( ZZ>= ` 
1 )
9594eleq2i 2535 . . . . . . . . . . . . . . 15  |-  ( (
# `  B )  e.  dom  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) )  <-> 
( # `  B )  e.  ( ZZ>= `  1
) )
9683, 95sylnibr 305 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  -.  ( # `
 B )  e. 
dom  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) )
97 ndmfv 5896 . . . . . . . . . . . . . 14  |-  ( -.  ( # `  B
)  e.  dom  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) )  ->  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (/) )
9896, 97syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (/) )
9991, 98eqtr4d 2501 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  ( # `
 B )  e.  ( ZZ>= `  1 )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
10099adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )  /\  -.  ( # `  B )  e.  ( ZZ>= `  1
) )  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
10182, 100pm2.61dan 791 . . . . . . . . . 10  |-  ( (
ph  /\  f :
( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  B ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
10244, 101eqtrd 2498 . . . . . . . . 9  |-  ( (
ph  /\  f :
( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) )
103102eqeq2d 2471 . . . . . . . 8  |-  ( (
ph  /\  f :
( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  A
) )  <->  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) )
104103pm5.32da 641 . . . . . . 7  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) )  <->  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) ) ) )
105 f1oeq2 5814 . . . . . . . . . 10  |-  ( ( 1 ... ( # `  A ) )  =  ( 1 ... ( # `
 B ) )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  <-> 
f : ( 1 ... ( # `  B
) ) -1-1-onto-> A ) )
10652, 105syl 16 . . . . . . . . 9  |-  ( ph  ->  ( f : ( 1 ... ( # `  A ) ) -1-1-onto-> A  <->  f :
( 1 ... ( # `
 B ) ) -1-1-onto-> A ) )
107 f1oeq3 5815 . . . . . . . . . 10  |-  ( A  =  B  ->  (
f : ( 1 ... ( # `  B
) ) -1-1-onto-> A  <->  f : ( 1 ... ( # `  B ) ) -1-1-onto-> B ) )
10841, 107syl 16 . . . . . . . . 9  |-  ( ph  ->  ( f : ( 1 ... ( # `  B ) ) -1-1-onto-> A  <->  f :
( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )
109106, 108bitrd 253 . . . . . . . 8  |-  ( ph  ->  ( f : ( 1 ... ( # `  A ) ) -1-1-onto-> A  <->  f :
( 1 ... ( # `
 B ) ) -1-1-onto-> B ) )
110109anbi1d 704 . . . . . . 7  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) )  <->  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) ) ) )
111104, 110bitrd 253 . . . . . 6  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) )  <->  ( f : ( 1 ... ( # `  B
) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  B
) ) ) ) )
112111exbidv 1715 . . . . 5  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  A
) ) )  <->  E. f
( f : ( 1 ... ( # `  B ) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) ) )
113112iotabidv 5578 . . . 4  |-  ( ph  ->  ( iota x E. f ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) ) )  =  ( iota x E. f ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) ) )
11436, 113ifeq12d 3964 . . 3  |-  ( ph  ->  if ( dom  F  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) ) ) )  =  if ( dom  F  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  B ) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) ) ) )
11513, 15, 114ifbieq12d 3971 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ,  ( 0g `  G ) ,  if ( dom 
F  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) ) ) ) )  =  if ( ran  F  C_  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } , 
( 0g `  H
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) ) ) ) )
116 eqid 2457 . . 3  |-  ( Base `  G )  =  (
Base `  G )
117 eqid 2457 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
118 eqid 2457 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
119 eqid 2457 . . 3  |-  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  =  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }
12039a1i 11 . . 3  |-  ( ph  ->  A  =  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) )
121 gsumpropd2.g . . 3  |-  ( ph  ->  G  e.  W )
122 gsumpropd2.f . . 3  |-  ( ph  ->  F  e.  V )
123 eqidd 2458 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
124116, 117, 118, 119, 120, 121, 122, 123gsumvalx 16023 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } , 
( 0g `  G
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  A ) ) ) ) ) ) )
125 eqid 2457 . . 3  |-  ( Base `  H )  =  (
Base `  H )
126 eqid 2457 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
127 eqid 2457 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
128 eqid 2457 . . 3  |-  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) }  =  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) }
12940a1i 11 . . 3  |-  ( ph  ->  B  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
130 gsumpropd2.h . . 3  |-  ( ph  ->  H  e.  X )
131125, 126, 127, 128, 129, 130, 122, 123gsumvalx 16023 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } , 
( 0g `  H
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 B ) ) -1-1-onto-> B  /\  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  B ) ) ) ) ) ) )
132115, 124, 1313eqtr4d 2508 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468    C_ wss 3471   (/)c0 3793   ifcif 3944   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011    o. ccom 5012   iotacio 5555   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   1c1 9510   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12109   #chash 12407   Basecbs 14643   +g cplusg 14711   0gc0g 14856    gsumg cgsu 14857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-seq 12110  df-0g 14858  df-gsum 14859
This theorem is referenced by:  gsumpropd2  16027
  Copyright terms: Public domain W3C validator