Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidpropd Structured version   Visualization version   GIF version

Theorem grpidpropd 17084
 Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
grpidpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpidpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpidpropd (𝜑 → (0g𝐾) = (0g𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem grpidpropd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
21eqeq1d 2612 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = 𝑦 ↔ (𝑥(+g𝐿)𝑦) = 𝑦))
31oveqrspc2v 6572 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
43oveqrspc2v 6572 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
54ancom2s 840 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
65eqeq1d 2612 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(+g𝐾)𝑥) = 𝑦 ↔ (𝑦(+g𝐿)𝑥) = 𝑦))
72, 6anbi12d 743 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
87anassrs 678 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
98ralbidva 2968 . . . . 5 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
109pm5.32da 671 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
11 grpidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
1211eleq2d 2673 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
1311raleqdv 3121 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
1412, 13anbi12d 743 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
15 grpidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1615eleq2d 2673 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐿)))
1715raleqdv 3121 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
1816, 17anbi12d 743 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
1910, 14, 183bitr3d 297 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
2019iotabidv 5789 . 2 (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
21 eqid 2610 . . 3 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2610 . . 3 (+g𝐾) = (+g𝐾)
23 eqid 2610 . . 3 (0g𝐾) = (0g𝐾)
2421, 22, 23grpidval 17083 . 2 (0g𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
25 eqid 2610 . . 3 (Base‘𝐿) = (Base‘𝐿)
26 eqid 2610 . . 3 (+g𝐿) = (+g𝐿)
27 eqid 2610 . . 3 (0g𝐿) = (0g𝐿)
2825, 26, 27grpidval 17083 . 2 (0g𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
2920, 24, 283eqtr4g 2669 1 (𝜑 → (0g𝐾) = (0g𝐿))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ℩cio 5766  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-0g 15925 This theorem is referenced by:  gsumpropd  17095  gsumpropd2lem  17096  mhmpropd  17164  grppropd  17260  grpinvpropd  17313  mulgpropd  17407  prds1  18437  rngidpropd  18518  drngprop  18581  drngpropd  18597  abvpropd  18665  lbspropd  18920  sralmod0  19009  opsr0  19409  mplbaspropd  19428  ply1mpl0  19446  phlpropd  19819  mat0  20042  nmpropd  22208  nmpropd2  22209  tng0  22257  mdegpropd  23648  ply1divalg2  23702  resv0g  29167  zlm0  29334  hlhils0  36255  hlhil0  36265
 Copyright terms: Public domain W3C validator