Step | Hyp | Ref
| Expression |
1 | | mhmpropd.e |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
2 | 1 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓‘(𝑥(+g‘𝐽)𝑦)) = (𝑓‘(𝑥(+g‘𝐿)𝑦))) |
3 | 2 | adantlr 747 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓‘(𝑥(+g‘𝐽)𝑦)) = (𝑓‘(𝑥(+g‘𝐿)𝑦))) |
4 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐵⟶𝐶 ∧ 𝑥 ∈ 𝐵) → (𝑓‘𝑥) ∈ 𝐶) |
5 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐵⟶𝐶 ∧ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ∈ 𝐶) |
6 | 4, 5 | anim12dan 878 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐵⟶𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘𝑥) ∈ 𝐶 ∧ (𝑓‘𝑦) ∈ 𝐶)) |
7 | | mhmpropd.f |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
8 | 7 | ralrimivva 2954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
9 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑥(+g‘𝐾)𝑦) = (𝑤(+g‘𝐾)𝑦)) |
10 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑤 → (𝑥(+g‘𝑀)𝑦) = (𝑤(+g‘𝑀)𝑦)) |
11 | 9, 10 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑤 → ((𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦) ↔ (𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝑀)𝑦))) |
12 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝐾)𝑧)) |
13 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑤(+g‘𝑀)𝑦) = (𝑤(+g‘𝑀)𝑧)) |
14 | 12, 13 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((𝑤(+g‘𝐾)𝑦) = (𝑤(+g‘𝑀)𝑦) ↔ (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧))) |
15 | 11, 14 | cbvral2v 3155 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐶 ∀𝑦 ∈ 𝐶 (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦) ↔ ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) |
16 | 8, 15 | sylib 207 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) |
17 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝐾)𝑧)) |
18 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤(+g‘𝑀)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧)) |
19 | 17, 18 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑓‘𝑥) → ((𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧) ↔ ((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧))) |
20 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑦) → ((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦))) |
21 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑦) → ((𝑓‘𝑥)(+g‘𝑀)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) |
22 | 20, 21 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑓‘𝑦) → (((𝑓‘𝑥)(+g‘𝐾)𝑧) = ((𝑓‘𝑥)(+g‘𝑀)𝑧) ↔ ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
23 | 19, 22 | rspc2va 3294 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓‘𝑥) ∈ 𝐶 ∧ (𝑓‘𝑦) ∈ 𝐶) ∧ ∀𝑤 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑤(+g‘𝐾)𝑧) = (𝑤(+g‘𝑀)𝑧)) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) |
24 | 6, 16, 23 | syl2anr 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓:𝐵⟶𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) |
25 | 24 | anassrs 678 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦))) |
26 | 3, 25 | eqeq12d 2625 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓:𝐵⟶𝐶) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
27 | 26 | 2ralbidva 2971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:𝐵⟶𝐶) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
28 | 27 | adantrl 748 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
29 | | mhmpropd.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) |
30 | | raleq 3115 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = (Base‘𝐽) → (∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) |
31 | 30 | raleqbi1dv 3123 |
. . . . . . . . . . . . 13
⊢ (𝐵 = (Base‘𝐽) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) |
32 | 29, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) |
33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)))) |
34 | | mhmpropd.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
35 | | raleq 3115 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = (Base‘𝐿) → (∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
36 | 35 | raleqbi1dv 3123 |
. . . . . . . . . . . . 13
⊢ (𝐵 = (Base‘𝐿) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
37 | 34, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
38 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
39 | 28, 33, 38 | 3bitr3d 297 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)))) |
40 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐵 = (Base‘𝐽)) |
41 | 34 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐵 = (Base‘𝐿)) |
42 | 1 | adantlr 747 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
43 | 40, 41, 42 | grpidpropd 17084 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (0g‘𝐽) = (0g‘𝐿)) |
44 | 43 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (𝑓‘(0g‘𝐽)) = (𝑓‘(0g‘𝐿))) |
45 | | mhmpropd.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 = (Base‘𝐾)) |
46 | 45 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐶 = (Base‘𝐾)) |
47 | | mhmpropd.d |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 = (Base‘𝑀)) |
48 | 47 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → 𝐶 = (Base‘𝑀)) |
49 | 7 | adantlr 747 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
50 | 46, 48, 49 | grpidpropd 17084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → (0g‘𝐾) = (0g‘𝑀)) |
51 | 44, 50 | eqeq12d 2625 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → ((𝑓‘(0g‘𝐽)) = (0g‘𝐾) ↔ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) |
52 | 39, 51 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ 𝑓:𝐵⟶𝐶)) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) |
53 | 52 | anassrs 678 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) ∧ 𝑓:𝐵⟶𝐶) → ((∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) |
54 | 53 | pm5.32da 671 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
55 | 29, 45 | feq23d 5953 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐽)⟶(Base‘𝐾))) |
56 | 55 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐽)⟶(Base‘𝐾))) |
57 | 56 | anbi1d 737 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))))) |
58 | 34, 47 | feq23d 5953 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐿)⟶(Base‘𝑀))) |
59 | 58 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → (𝑓:𝐵⟶𝐶 ↔ 𝑓:(Base‘𝐿)⟶(Base‘𝑀))) |
60 | 59 | anbi1d 737 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:𝐵⟶𝐶 ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
61 | 54, 57, 60 | 3bitr3d 297 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
62 | | 3anass 1035 |
. . . . . 6
⊢ ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)))) |
63 | | 3anass 1035 |
. . . . . 6
⊢ ((𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ (∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) |
64 | 61, 62, 63 | 3bitr4g 302 |
. . . . 5
⊢ ((𝜑 ∧ (𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) |
65 | 64 | pm5.32da 671 |
. . . 4
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
66 | 29, 34, 1 | mndpropd 17139 |
. . . . . 6
⊢ (𝜑 → (𝐽 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
67 | 45, 47, 7 | mndpropd 17139 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝑀 ∈ Mnd)) |
68 | 66, 67 | anbi12d 743 |
. . . . 5
⊢ (𝜑 → ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ↔ (𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd))) |
69 | 68 | anbi1d 737 |
. . . 4
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
70 | 65, 69 | bitrd 267 |
. . 3
⊢ (𝜑 → (((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾))) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀))))) |
71 | | eqid 2610 |
. . . 4
⊢
(Base‘𝐽) =
(Base‘𝐽) |
72 | | eqid 2610 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
73 | | eqid 2610 |
. . . 4
⊢
(+g‘𝐽) = (+g‘𝐽) |
74 | | eqid 2610 |
. . . 4
⊢
(+g‘𝐾) = (+g‘𝐾) |
75 | | eqid 2610 |
. . . 4
⊢
(0g‘𝐽) = (0g‘𝐽) |
76 | | eqid 2610 |
. . . 4
⊢
(0g‘𝐾) = (0g‘𝐾) |
77 | 71, 72, 73, 74, 75, 76 | ismhm 17160 |
. . 3
⊢ (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ ((𝐽 ∈ Mnd ∧ 𝐾 ∈ Mnd) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g‘𝐽)𝑦)) = ((𝑓‘𝑥)(+g‘𝐾)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐽)) = (0g‘𝐾)))) |
78 | | eqid 2610 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
79 | | eqid 2610 |
. . . 4
⊢
(Base‘𝑀) =
(Base‘𝑀) |
80 | | eqid 2610 |
. . . 4
⊢
(+g‘𝐿) = (+g‘𝐿) |
81 | | eqid 2610 |
. . . 4
⊢
(+g‘𝑀) = (+g‘𝑀) |
82 | | eqid 2610 |
. . . 4
⊢
(0g‘𝐿) = (0g‘𝐿) |
83 | | eqid 2610 |
. . . 4
⊢
(0g‘𝑀) = (0g‘𝑀) |
84 | 78, 79, 80, 81, 82, 83 | ismhm 17160 |
. . 3
⊢ (𝑓 ∈ (𝐿 MndHom 𝑀) ↔ ((𝐿 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g‘𝐿)𝑦)) = ((𝑓‘𝑥)(+g‘𝑀)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝐿)) = (0g‘𝑀)))) |
85 | 70, 77, 84 | 3bitr4g 302 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐽 MndHom 𝐾) ↔ 𝑓 ∈ (𝐿 MndHom 𝑀))) |
86 | 85 | eqrdv 2608 |
1
⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) |