MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidpropd Structured version   Unicode version

Theorem grpidpropd 15760
Description: If two structures have the same group components (properties), they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
mndpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
mndpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
mndpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpidpropd  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem grpidpropd
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
21eqeq1d 2469 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  y  <-> 
( x ( +g  `  L ) y )  =  y ) )
31proplem 14941 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
43proplem 14941 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
54ancom2s 800 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
65eqeq1d 2469 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( y ( +g  `  K ) x )  =  y  <-> 
( y ( +g  `  L ) x )  =  y ) )
72, 6anbi12d 710 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
87anassrs 648 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
98ralbidva 2900 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  A. y  e.  B  ( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) )
109pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
11 mndpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
1211eleq2d 2537 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  K
) ) )
1311raleqdv 3064 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )
1412, 13anbi12d 710 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) ) )
15 mndpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1615eleq2d 2537 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  L
) ) )
1715raleqdv 3064 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y )  <->  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
1816, 17anbi12d 710 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
1910, 14, 183bitr3d 283 . . 3  |-  ( ph  ->  ( ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
2019iotabidv 5570 . 2  |-  ( ph  ->  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  L )  /\  A. y  e.  (
Base `  L )
( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) ) )
21 eqid 2467 . . 3  |-  ( Base `  K )  =  (
Base `  K )
22 eqid 2467 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
23 eqid 2467 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
2421, 22, 23grpidval 15745 . 2  |-  ( 0g
`  K )  =  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )
25 eqid 2467 . . 3  |-  ( Base `  L )  =  (
Base `  L )
26 eqid 2467 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
27 eqid 2467 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
2825, 26, 27grpidval 15745 . 2  |-  ( 0g
`  L )  =  ( iota x ( x  e.  ( Base `  L )  /\  A. y  e.  ( Base `  L ) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
2920, 24, 283eqtr4g 2533 1  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   iotacio 5547   ` cfv 5586  (class class class)co 6282   Basecbs 14486   +g cplusg 14551   0gc0g 14691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-0g 14693
This theorem is referenced by:  mhmpropd  15783  gsumpropd  15817  gsumpropd2lem  15818  grppropd  15869  grpinvpropd  15914  mulgpropd  15975  prds1  17047  rngidpropd  17128  drngprop  17190  drngpropd  17206  abvpropd  17274  lbspropd  17528  sralmod0  17617  opsr0  18030  mplbaspropd  18049  ply1mpl0  18067  phlpropd  18457  mat0  18686  nmpropd  20849  nmpropd2  20850  tng0  20892  mdegpropd  22219  ply1divalg2  22274  resv0g  27489  zlm0  27579  hlhils0  36745  hlhil0  36755
  Copyright terms: Public domain W3C validator