Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngidpropd Structured version   Visualization version   GIF version

Theorem rngidpropd 18518
 Description: The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
rngidpropd (𝜑 → (1r𝐾) = (1r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem rngidpropd
StepHypRef Expression
1 rngidpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 eqid 2610 . . . . 5 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3 eqid 2610 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
42, 3mgpbas 18318 . . . 4 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
51, 4syl6eq 2660 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
6 rngidpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
7 eqid 2610 . . . . 5 (mulGrp‘𝐿) = (mulGrp‘𝐿)
8 eqid 2610 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
97, 8mgpbas 18318 . . . 4 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
106, 9syl6eq 2660 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
11 rngidpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
12 eqid 2610 . . . . . 6 (.r𝐾) = (.r𝐾)
132, 12mgpplusg 18316 . . . . 5 (.r𝐾) = (+g‘(mulGrp‘𝐾))
1413oveqi 6562 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
15 eqid 2610 . . . . . 6 (.r𝐿) = (.r𝐿)
167, 15mgpplusg 18316 . . . . 5 (.r𝐿) = (+g‘(mulGrp‘𝐿))
1716oveqi 6562 . . . 4 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
1811, 14, 173eqtr3g 2667 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
195, 10, 18grpidpropd 17084 . 2 (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿)))
20 eqid 2610 . . 3 (1r𝐾) = (1r𝐾)
212, 20ringidval 18326 . 2 (1r𝐾) = (0g‘(mulGrp‘𝐾))
22 eqid 2610 . . 3 (1r𝐿) = (1r𝐿)
237, 22ringidval 18326 . 2 (1r𝐿) = (0g‘(mulGrp‘𝐿))
2419, 21, 233eqtr4g 2669 1 (𝜑 → (1r𝐾) = (1r𝐿))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  mulGrpcmgp 18312  1rcur 18324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgp 18313  df-ur 18325 This theorem is referenced by:  unitpropd  18520  subrgpropd  18637  lmodprop2d  18748  opsr1  19410  ply1mpl1  19448  zlm1  29335  hlhils1N  36256
 Copyright terms: Public domain W3C validator