Step | Hyp | Ref
| Expression |
1 | | subrgpropd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | subrgpropd.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | subrgpropd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | | subrgpropd.4 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
5 | 1, 2, 3, 4 | ringpropd 18405 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | 1 | ineq2d 3776 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
7 | | vex 3176 |
. . . . . . . 8
⊢ 𝑠 ∈ V |
8 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠) |
9 | | eqid 2610 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
10 | 8, 9 | ressbas 15757 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠))) |
11 | 7, 10 | ax-mp 5 |
. . . . . . 7
⊢ (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠)) |
12 | 6, 11 | syl6eq 2660 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (Base‘(𝐾 ↾s 𝑠))) |
13 | 2 | ineq2d 3776 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
14 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠) |
15 | | eqid 2610 |
. . . . . . . . 9
⊢
(Base‘𝐿) =
(Base‘𝐿) |
16 | 14, 15 | ressbas 15757 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠))) |
17 | 7, 16 | ax-mp 5 |
. . . . . . 7
⊢ (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠)) |
18 | 13, 17 | syl6eq 2660 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (Base‘(𝐿 ↾s 𝑠))) |
19 | | inss2 3796 |
. . . . . . . . 9
⊢ (𝑠 ∩ 𝐵) ⊆ 𝐵 |
20 | 19 | sseli 3564 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑠 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
21 | 19 | sseli 3564 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑠 ∩ 𝐵) → 𝑦 ∈ 𝐵) |
22 | 20, 21 | anim12i 588 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
23 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(+g‘𝐾) = (+g‘𝐾) |
24 | 8, 23 | ressplusg 15818 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(+g‘𝐾) =
(+g‘(𝐾
↾s 𝑠))) |
25 | 7, 24 | ax-mp 5 |
. . . . . . . . 9
⊢
(+g‘𝐾) = (+g‘(𝐾 ↾s 𝑠)) |
26 | 25 | oveqi 6562 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) |
27 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(+g‘𝐿) = (+g‘𝐿) |
28 | 14, 27 | ressplusg 15818 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(+g‘𝐿) =
(+g‘(𝐿
↾s 𝑠))) |
29 | 7, 28 | ax-mp 5 |
. . . . . . . . 9
⊢
(+g‘𝐿) = (+g‘(𝐿 ↾s 𝑠)) |
30 | 29 | oveqi 6562 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦) |
31 | 3, 26, 30 | 3eqtr3g 2667 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
32 | 22, 31 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
33 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(.r‘𝐾) = (.r‘𝐾) |
34 | 8, 33 | ressmulr 15829 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
35 | 7, 34 | ax-mp 5 |
. . . . . . . . 9
⊢
(.r‘𝐾) = (.r‘(𝐾 ↾s 𝑠)) |
36 | 35 | oveqi 6562 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) |
37 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(.r‘𝐿) = (.r‘𝐿) |
38 | 14, 37 | ressmulr 15829 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
39 | 7, 38 | ax-mp 5 |
. . . . . . . . 9
⊢
(.r‘𝐿) = (.r‘(𝐿 ↾s 𝑠)) |
40 | 39 | oveqi 6562 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦) |
41 | 4, 36, 40 | 3eqtr3g 2667 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
42 | 22, 41 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
43 | 12, 18, 32, 42 | ringpropd 18405 |
. . . . 5
⊢ (𝜑 → ((𝐾 ↾s 𝑠) ∈ Ring ↔ (𝐿 ↾s 𝑠) ∈ Ring)) |
44 | 5, 43 | anbi12d 743 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring))) |
45 | 1, 2 | eqtr3d 2646 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
46 | 45 | sseq2d 3596 |
. . . . 5
⊢ (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
47 | 1, 2, 4 | rngidpropd 18518 |
. . . . . 6
⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
48 | 47 | eleq1d 2672 |
. . . . 5
⊢ (𝜑 →
((1r‘𝐾)
∈ 𝑠 ↔
(1r‘𝐿)
∈ 𝑠)) |
49 | 46, 48 | anbi12d 743 |
. . . 4
⊢ (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
50 | 44, 49 | anbi12d 743 |
. . 3
⊢ (𝜑 → (((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠)))) |
51 | | eqid 2610 |
. . . 4
⊢
(1r‘𝐾) = (1r‘𝐾) |
52 | 9, 51 | issubrg 18603 |
. . 3
⊢ (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠))) |
53 | | eqid 2610 |
. . . 4
⊢
(1r‘𝐿) = (1r‘𝐿) |
54 | 15, 53 | issubrg 18603 |
. . 3
⊢ (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
55 | 50, 52, 54 | 3bitr4g 302 |
. 2
⊢ (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))) |
56 | 55 | eqrdv 2608 |
1
⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) |