Proof of Theorem grppropd
Step | Hyp | Ref
| Expression |
1 | | grppropd.1 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | grppropd.2 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | grppropd.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | 1, 2, 3 | mndpropd 17139 |
. . 3
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
5 | 1, 2, 3 | grpidpropd 17084 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝐾) = (0g‘𝐿)) |
7 | 3, 6 | eqeq12d 2625 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
8 | 7 | anass1rs 845 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
9 | 8 | rexbidva 3031 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
10 | 9 | ralbidva 2968 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
11 | 1 | rexeqdv 3122 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
12 | 1, 11 | raleqbidv 3129 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
13 | 2 | rexeqdv 3122 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
14 | 2, 13 | raleqbidv 3129 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑥(+g‘𝐿)𝑦) = (0g‘𝐿) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
15 | 10, 12, 14 | 3bitr3d 297 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
16 | 4, 15 | anbi12d 743 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿)))) |
17 | | eqid 2610 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | | eqid 2610 |
. . 3
⊢
(+g‘𝐾) = (+g‘𝐾) |
19 | | eqid 2610 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
20 | 17, 18, 19 | isgrp 17251 |
. 2
⊢ (𝐾 ∈ Grp ↔ (𝐾 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐾)∃𝑥 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) = (0g‘𝐾))) |
21 | | eqid 2610 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
22 | | eqid 2610 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
23 | | eqid 2610 |
. . 3
⊢
(0g‘𝐿) = (0g‘𝐿) |
24 | 21, 22, 23 | isgrp 17251 |
. 2
⊢ (𝐿 ∈ Grp ↔ (𝐿 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐿)∃𝑥 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) = (0g‘𝐿))) |
25 | 16, 20, 24 | 3bitr4g 302 |
1
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |