MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngprop Structured version   Visualization version   GIF version

Theorem drngprop 18581
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
drngprop.b (Base‘𝐾) = (Base‘𝐿)
drngprop.p (+g𝐾) = (+g𝐿)
drngprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
drngprop (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)

Proof of Theorem drngprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2611 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾))
2 drngprop.b . . . . . . 7 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . . . . 6 (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿))
4 drngprop.m . . . . . . . 8 (.r𝐾) = (.r𝐿)
54oveqi 6562 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
65a1i 11 . . . . . 6 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
71, 3, 6unitpropd 18520 . . . . 5 (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿))
8 drngprop.p . . . . . . . . . 10 (+g𝐾) = (+g𝐿)
98oveqi 6562 . . . . . . . . 9 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
109a1i 11 . . . . . . . 8 ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 3, 10grpidpropd 17084 . . . . . . 7 (𝐾 ∈ Ring → (0g𝐾) = (0g𝐿))
1211sneqd 4137 . . . . . 6 (𝐾 ∈ Ring → {(0g𝐾)} = {(0g𝐿)})
1312difeq2d 3690 . . . . 5 (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g𝐾)}) = ((Base‘𝐾) ∖ {(0g𝐿)}))
147, 13eqeq12d 2625 . . . 4 (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1514pm5.32i 667 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
162, 8, 4ringprop 18407 . . . 4 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
1716anbi1i 727 . . 3 ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
1815, 17bitri 263 . 2 ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
19 eqid 2610 . . 3 (Base‘𝐾) = (Base‘𝐾)
20 eqid 2610 . . 3 (Unit‘𝐾) = (Unit‘𝐾)
21 eqid 2610 . . 3 (0g𝐾) = (0g𝐾)
2219, 20, 21isdrng 18574 . 2 (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g𝐾)})))
23 eqid 2610 . . 3 (Unit‘𝐿) = (Unit‘𝐿)
24 eqid 2610 . . 3 (0g𝐿) = (0g𝐿)
252, 23, 24isdrng 18574 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g𝐿)})))
2618, 22, 253bitr4i 291 1 (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  cdif 3537  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Ringcrg 18370  Unitcui 18462  DivRingcdr 18570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-drng 18572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator