Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drngprop | Structured version Visualization version GIF version |
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
drngprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
drngprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
drngprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
Ref | Expression |
---|---|
drngprop | ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐾)) | |
2 | drngprop.b | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ Ring → (Base‘𝐾) = (Base‘𝐿)) |
4 | drngprop.m | . . . . . . . 8 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
5 | 4 | oveqi 6562 | . . . . . . 7 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
7 | 1, 3, 6 | unitpropd 18520 | . . . . 5 ⊢ (𝐾 ∈ Ring → (Unit‘𝐾) = (Unit‘𝐿)) |
8 | drngprop.p | . . . . . . . . . 10 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
9 | 8 | oveqi 6562 | . . . . . . . . 9 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝐾 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
11 | 1, 3, 10 | grpidpropd 17084 | . . . . . . 7 ⊢ (𝐾 ∈ Ring → (0g‘𝐾) = (0g‘𝐿)) |
12 | 11 | sneqd 4137 | . . . . . 6 ⊢ (𝐾 ∈ Ring → {(0g‘𝐾)} = {(0g‘𝐿)}) |
13 | 12 | difeq2d 3690 | . . . . 5 ⊢ (𝐾 ∈ Ring → ((Base‘𝐾) ∖ {(0g‘𝐾)}) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) |
14 | 7, 13 | eqeq12d 2625 | . . . 4 ⊢ (𝐾 ∈ Ring → ((Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}) ↔ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
15 | 14 | pm5.32i 667 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
16 | 2, 8, 4 | ringprop 18407 | . . . 4 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
17 | 16 | anbi1i 727 | . . 3 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
18 | 15, 17 | bitri 263 | . 2 ⊢ ((𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)})) ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
19 | eqid 2610 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
20 | eqid 2610 | . . 3 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
21 | eqid 2610 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
22 | 19, 20, 21 | isdrng 18574 | . 2 ⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖ {(0g‘𝐾)}))) |
23 | eqid 2610 | . . 3 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
24 | eqid 2610 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
25 | 2, 23, 24 | isdrng 18574 | . 2 ⊢ (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ (Unit‘𝐿) = ((Base‘𝐾) ∖ {(0g‘𝐿)}))) |
26 | 18, 22, 25 | 3bitr4i 291 | 1 ⊢ (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 {csn 4125 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 .rcmulr 15769 0gc0g 15923 Ringcrg 18370 Unitcui 18462 DivRingcdr 18570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-mulr 15782 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-drng 18572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |