Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem2 Structured version   Visualization version   GIF version

Theorem evlslem2 19333
 Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlslem2.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem2.b 𝐵 = (Base‘𝑃)
evlslem2.m · = (.r𝑆)
evlslem2.z 0 = (0g𝑅)
evlslem2.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem2.i (𝜑𝐼 ∈ V)
evlslem2.r (𝜑𝑅 ∈ CRing)
evlslem2.s (𝜑𝑆 ∈ CRing)
evlslem2.e1 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
evlslem2.e2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
Assertion
Ref Expression
evlslem2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
Distinct variable groups:   𝜑,𝑖,𝑗,𝑘,𝑦   𝐵,𝑖,𝑗,𝑘,𝑥,𝑦   𝐷,𝑖,𝑗,𝑘,𝑥,𝑦   𝑖,𝐸,𝑗   ,𝐼,𝑖,𝑗,𝑘   · ,𝑖,𝑗   𝑃,𝑖,𝑗,𝑘,𝑥,𝑦   𝑅,,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗   0 ,,𝑖,𝑗,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,)   𝐵()   𝐷()   𝑃()   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑘)   · (𝑥,𝑦,,𝑘)   𝐸(𝑥,𝑦,,𝑘)   𝐼(𝑥,𝑦)

Proof of Theorem evlslem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 evlslem2.b . . . . 5 𝐵 = (Base‘𝑃)
2 eqid 2610 . . . . 5 (.r𝑃) = (.r𝑃)
3 eqid 2610 . . . . 5 (0g𝑃) = (0g𝑃)
4 evlslem2.d . . . . . . 7 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
5 ovex 6577 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
64, 5rabex2 4742 . . . . . 6 𝐷 ∈ V
76a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ V)
8 evlslem2.i . . . . . . 7 (𝜑𝐼 ∈ V)
9 evlslem2.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
10 crngring 18381 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
12 evlslem2.p . . . . . . . 8 𝑃 = (𝐼 mPoly 𝑅)
1312mplring 19273 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
148, 11, 13syl2anc 691 . . . . . 6 (𝜑𝑃 ∈ Ring)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
16 evlslem2.z . . . . . 6 0 = (0g𝑅)
17 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
188ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐼 ∈ V)
1911ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑅 ∈ Ring)
20 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
2112, 17, 1, 4, 20mplelf 19254 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐷⟶(Base‘𝑅))
2221ffvelrnda 6267 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑥𝑗) ∈ (Base‘𝑅))
23 simpr 476 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝑗𝐷)
2412, 4, 16, 17, 18, 19, 1, 22, 23mplmon2cl 19321 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
258ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐼 ∈ V)
2611ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑅 ∈ Ring)
27 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2812, 17, 1, 4, 27mplelf 19254 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐷⟶(Base‘𝑅))
2928ffvelrnda 6267 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑦𝑖) ∈ (Base‘𝑅))
30 simpr 476 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝑖𝐷)
3112, 4, 16, 17, 25, 26, 1, 29, 30mplmon2cl 19321 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
326mptex 6390 . . . . . . . . . . . 12 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V
33 funmpt 5840 . . . . . . . . . . . 12 Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
34 fvex 6113 . . . . . . . . . . . 12 (0g𝑃) ∈ V
3532, 33, 343pm3.2i 1232 . . . . . . . . . . 11 ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V))
37 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦𝐵)
389adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑅 ∈ CRing)
3912, 1, 16, 37, 38mplelsfi 19312 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → 𝑦 finSupp 0 )
4039fsuppimpd 8165 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ∈ Fin)
4112, 17, 1, 4, 37mplelf 19254 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝑦:𝐷⟶(Base‘𝑅))
42 ssid 3587 . . . . . . . . . . . . . . . . 17 (𝑦 supp 0 ) ⊆ (𝑦 supp 0 )
4342a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → (𝑦 supp 0 ) ⊆ (𝑦 supp 0 ))
446a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
45 fvex 6113 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
4616, 45eqeltri 2684 . . . . . . . . . . . . . . . . 17 0 ∈ V
4746a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐵) → 0 ∈ V)
4841, 43, 44, 47suppssr 7213 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑦𝑗) = 0 )
4948ifeq1d 4054 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, 0 , 0 ))
50 ifid 4075 . . . . . . . . . . . . . 14 if(𝑘 = 𝑗, 0 , 0 ) = 0
5149, 50syl6eq 2660 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = 0 )
5251mpteq2dv 4673 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷0 ))
53 ringgrp 18375 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5411, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Grp)
5512, 4, 16, 3, 8, 54mpl0 19262 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
56 fconstmpt 5085 . . . . . . . . . . . . . 14 (𝐷 × { 0 }) = (𝑘𝐷0 )
5755, 56syl6eq 2660 . . . . . . . . . . . . 13 (𝜑 → (0g𝑃) = (𝑘𝐷0 ))
5857ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (0g𝑃) = (𝑘𝐷0 ))
5952, 58eqtr4d 2647 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑗 ∈ (𝐷 ∖ (𝑦 supp 0 ))) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (0g𝑃))
6059, 44suppss2 7216 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))
61 suppssfifsupp 8173 . . . . . . . . . 10 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) ∧ (0g𝑃) ∈ V) ∧ ((𝑦 supp 0 ) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) supp (0g𝑃)) ⊆ (𝑦 supp 0 ))) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
6236, 40, 60, 61syl12anc 1316 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
6362ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
64 fveq1 6102 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑗) = (𝑥𝑗))
6564ifeq1d 4054 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑘 = 𝑗, (𝑦𝑗), 0 ) = if(𝑘 = 𝑗, (𝑥𝑗), 0 ))
6665mpteq2dv 4673 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))
6766mpteq2dv 4673 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
6867breq1d 4593 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃)))
6968cbvralv 3147 . . . . . . . 8 (∀𝑦𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃) ↔ ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
7063, 69sylib 207 . . . . . . 7 (𝜑 → ∀𝑥𝐵 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
7170r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝐵) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
7271adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) finSupp (0g𝑃))
73 equequ2 1940 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑘 = 𝑖𝑘 = 𝑗))
74 fveq2 6103 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑦𝑖) = (𝑦𝑗))
7573, 74ifbieq1d 4059 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑘 = 𝑖, (𝑦𝑖), 0 ) = if(𝑘 = 𝑗, (𝑦𝑗), 0 ))
7675mpteq2dv 4673 . . . . . . 7 (𝑖 = 𝑗 → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7776cbvmptv 4678 . . . . . 6 (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 )))
7862adantrl 748 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑦𝑗), 0 ))) finSupp (0g𝑃))
7977, 78syl5eqbr 4618 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) finSupp (0g𝑃))
801, 2, 3, 7, 7, 15, 24, 31, 72, 79gsumdixp 18432 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
8180fveq2d 6107 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
82 ringcmn 18404 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
8314, 82syl 17 . . . . 5 (𝜑𝑃 ∈ CMnd)
8483adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ CMnd)
85 evlslem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
86 crngring 18381 . . . . . . 7 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
8785, 86syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
8887adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Ring)
89 ringmnd 18379 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
9088, 89syl 17 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
916, 6xpex 6860 . . . . 5 (𝐷 × 𝐷) ∈ V
9291a1i 11 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 × 𝐷) ∈ V)
93 evlslem2.e1 . . . . . 6 (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))
94 ghmmhm 17493 . . . . . 6 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9593, 94syl 17 . . . . 5 (𝜑𝐸 ∈ (𝑃 MndHom 𝑆))
9695adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 ∈ (𝑃 MndHom 𝑆))
9714ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑃 ∈ Ring)
9824adantrr 749 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵)
9931adantrl 748 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵)
1001, 2ringcl 18384 . . . . . . 7 ((𝑃 ∈ Ring ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ 𝐵 ∧ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ 𝐵) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
10197, 98, 99, 100syl3anc 1318 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
102101ralrimivva 2954 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵)
103 eqid 2610 . . . . . 6 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
104103fmpt2 7126 . . . . 5 (∀𝑗𝐷𝑖𝐷 ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ 𝐵 ↔ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
105102, 104sylib 207 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))):(𝐷 × 𝐷)⟶𝐵)
1066, 6mpt2ex 7136 . . . . . . 7 (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
107103mpt2fun 6660 . . . . . . 7 Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
108106, 107, 343pm3.2i 1232 . . . . . 6 ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V)
109108a1i 11 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V))
11072fsuppimpd 8165 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin)
11179fsuppimpd 8165 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin)
112 xpfi 8116 . . . . . 6 ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
113110, 111, 112syl2anc 691 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin)
1141, 3, 2, 15, 24, 31, 7, 7evlslem4 19329 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))
115 suppssfifsupp 8173 . . . . 5 ((((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))) ∈ Fin ∧ ((𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑃)) ⊆ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) × ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))))) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
116109, 113, 114, 115syl12anc 1316 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑃))
1171, 3, 84, 90, 92, 96, 105, 116gsummhm 18161 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝐸‘(𝑃 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1188ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝐼 ∈ V)
1199ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑅 ∈ CRing)
120 eqid 2610 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
121 simprl 790 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑗𝐷)
122 simprr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → 𝑖𝐷)
12322adantrr 749 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑥𝑗) ∈ (Base‘𝑅))
12429adantrl 748 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝑦𝑖) ∈ (Base‘𝑅))
12512, 4, 16, 17, 118, 119, 2, 120, 121, 122, 123, 124mplmon2mul 19322 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 )))
126125fveq2d 6107 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))))
127 evlslem2.e2 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
128127anassrs 678 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
129126, 128eqtrd 2644 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑗𝐷𝑖𝐷)) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
1301293impb 1252 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷𝑖𝐷) → (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
131130mpt2eq3dva 6617 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
132131oveq2d 6565 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
133 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
134 eqid 2610 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
1351, 134ghmf 17487 . . . . . . . . 9 (𝐸 ∈ (𝑃 GrpHom 𝑆) → 𝐸:𝐵⟶(Base‘𝑆))
13693, 135syl 17 . . . . . . . 8 (𝜑𝐸:𝐵⟶(Base‘𝑆))
137136feqmptd 6159 . . . . . . 7 (𝜑𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
138137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐸 = (𝑧𝐵 ↦ (𝐸𝑧)))
139 fveq2 6103 . . . . . 6 (𝑧 = ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) → (𝐸𝑧) = (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
140101, 133, 138, 139fmpt2co 7147 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
141140oveq2d 6565 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ (𝐸‘((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
142 eqidd 2611 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
143 fveq2 6103 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
14424, 142, 138, 143fmptco 6303 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) = (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
145144oveq2d 6565 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
146 eqidd 2611 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
147 fveq2 6103 . . . . . . . 8 (𝑧 = (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) → (𝐸𝑧) = (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
14831, 146, 138, 147fmptco 6303 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) = (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
149148oveq2d 6565 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
150145, 149oveq12d 6567 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
151 evlslem2.m . . . . . 6 · = (.r𝑆)
152 eqid 2610 . . . . . 6 (0g𝑆) = (0g𝑆)
153136ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
154153, 24ffvelrnd 6268 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑗𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) ∈ (Base‘𝑆))
155136ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → 𝐸:𝐵⟶(Base‘𝑆))
156155, 31ffvelrnd 6268 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝐷) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) ∈ (Base‘𝑆))
1576mptex 6390 . . . . . . . . 9 (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V
158 funmpt 5840 . . . . . . . . 9 Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))
159 fvex 6113 . . . . . . . . 9 (0g𝑆) ∈ V
160157, 158, 1593pm3.2i 1232 . . . . . . . 8 ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V)
161160a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V))
162 ssid 3587 . . . . . . . . . 10 ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃))
163162a1i 11 . . . . . . . . 9 (𝜑 → ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
1643, 152ghmid 17489 . . . . . . . . . 10 (𝐸 ∈ (𝑃 GrpHom 𝑆) → (𝐸‘(0g𝑃)) = (0g𝑆))
16593, 164syl 17 . . . . . . . . 9 (𝜑 → (𝐸‘(0g𝑃)) = (0g𝑆))
1666mptex 6390 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V
167166a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )) ∈ V)
16834a1i 11 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ V)
169163, 165, 167, 168suppssfv 7218 . . . . . . . 8 (𝜑 → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
170169adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))
171 suppssfifsupp 8173 . . . . . . 7 ((((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∈ V ∧ Fun (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) supp (0g𝑆)) ⊆ ((𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) supp (0g𝑃)))) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
172161, 110, 170, 171syl12anc 1316 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))) finSupp (0g𝑆))
1736mptex 6390 . . . . . . . . 9 (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V
174 funmpt 5840 . . . . . . . . 9 Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))
175173, 174, 1593pm3.2i 1232 . . . . . . . 8 ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V)
176175a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V))
177 ssid 3587 . . . . . . . . . 10 ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃))
178177a1i 11 . . . . . . . . 9 (𝜑 → ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
1796mptex 6390 . . . . . . . . . 10 (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V
180179a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐷) → (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )) ∈ V)
181178, 165, 180, 168suppssfv 7218 . . . . . . . 8 (𝜑 → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
182181adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))
183 suppssfifsupp 8173 . . . . . . 7 ((((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∈ V ∧ Fun (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) ∧ (0g𝑆) ∈ V) ∧ (((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)) ∈ Fin ∧ ((𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) supp (0g𝑆)) ⊆ ((𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) supp (0g𝑃)))) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
184176, 111, 182, 183syl12anc 1316 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))) finSupp (0g𝑆))
185134, 151, 152, 7, 7, 88, 154, 156, 172, 184gsumdixp 18432 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝑗𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝑖𝐷 ↦ (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
186150, 185eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = (𝑆 Σg (𝑗𝐷, 𝑖𝐷 ↦ ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
187132, 141, 1863eqtr4d 2654 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷, 𝑖𝐷 ↦ ((𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))(.r𝑃)(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
18881, 117, 1873eqtr2d 2650 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
1898adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ V)
19011adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
19112, 4, 16, 1, 189, 190, 20mplcoe4 19324 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))))
19212, 4, 16, 1, 189, 190, 27mplcoe4 19324 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))
193191, 192oveq12d 6567 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑃)𝑦) = ((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
194193fveq2d 6107 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = (𝐸‘((𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))(.r𝑃)(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
195191fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
196 eqid 2610 . . . . . 6 (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) = (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 )))
19724, 196fmptd 6292 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))):𝐷𝐵)
1981, 3, 84, 90, 7, 96, 197, 72gsummhm 18161 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) = (𝐸‘(𝑃 Σg (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
199195, 198eqtr4d 2647 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑥) = (𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))))
200192fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
201 eqid 2610 . . . . . 6 (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))) = (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))
20231, 201fmptd 6292 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))):𝐷𝐵)
2031, 3, 84, 90, 7, 96, 202, 79gsummhm 18161 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))) = (𝐸‘(𝑃 Σg (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
204200, 203eqtr4d 2647 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸𝑦) = (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 ))))))
205199, 204oveq12d 6567 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐸𝑥) · (𝐸𝑦)) = ((𝑆 Σg (𝐸 ∘ (𝑗𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))))) · (𝑆 Σg (𝐸 ∘ (𝑖𝐷 ↦ (𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))))
206188, 194, 2053eqtr4d 2654 1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037   “ cima 5041   ∘ ccom 5042  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ∘𝑓 cof 6793   supp csupp 7182   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158   + caddc 9818  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156  Grpcgrp 17245   GrpHom cghm 17480  CMndccmn 18016  Ringcrg 18370  CRingccrg 18371   mPoly cmpl 19174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-assa 19133  df-psr 19177  df-mpl 19179 This theorem is referenced by:  evlslem1  19336
 Copyright terms: Public domain W3C validator