MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem4 Structured version   Visualization version   GIF version

Theorem evlslem4 19329
Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
evlslem4.b 𝐵 = (Base‘𝑅)
evlslem4.z 0 = (0g𝑅)
evlslem4.t · = (.r𝑅)
evlslem4.r (𝜑𝑅 ∈ Ring)
evlslem4.x ((𝜑𝑥𝐼) → 𝑋𝐵)
evlslem4.y ((𝜑𝑦𝐽) → 𝑌𝐵)
evlslem4.i (𝜑𝐼𝑉)
evlslem4.j (𝜑𝐽𝑊)
Assertion
Ref Expression
evlslem4 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑦,𝑋   𝑥,𝐵,𝑦   𝑥, · ,𝑦   𝑥,𝑌
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥)   𝑌(𝑦)   0 (𝑥,𝑦)

Proof of Theorem evlslem4
Dummy variables 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . . 6 𝑖(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
2 nfcv 2751 . . . . . 6 𝑗(((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))
3 nffvmpt1 6111 . . . . . . 7 𝑥((𝑥𝐼𝑋)‘𝑖)
4 nfcv 2751 . . . . . . 7 𝑥 ·
5 nfcv 2751 . . . . . . 7 𝑥((𝑦𝐽𝑌)‘𝑗)
63, 4, 5nfov 6575 . . . . . 6 𝑥(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
7 nfcv 2751 . . . . . . 7 𝑦((𝑥𝐼𝑋)‘𝑖)
8 nfcv 2751 . . . . . . 7 𝑦 ·
9 nffvmpt1 6111 . . . . . . 7 𝑦((𝑦𝐽𝑌)‘𝑗)
107, 8, 9nfov 6575 . . . . . 6 𝑦(((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗))
11 fveq2 6103 . . . . . . 7 (𝑥 = 𝑖 → ((𝑥𝐼𝑋)‘𝑥) = ((𝑥𝐼𝑋)‘𝑖))
12 fveq2 6103 . . . . . . 7 (𝑦 = 𝑗 → ((𝑦𝐽𝑌)‘𝑦) = ((𝑦𝐽𝑌)‘𝑗))
1311, 12oveqan12d 6568 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
141, 2, 6, 10, 13cbvmpt2 6632 . . . . 5 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
15 vex 3176 . . . . . . . 8 𝑖 ∈ V
16 vex 3176 . . . . . . . 8 𝑗 ∈ V
1715, 16eqop2 7100 . . . . . . 7 (𝑧 = ⟨𝑖, 𝑗⟩ ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)))
18 fveq2 6103 . . . . . . . . 9 ((1st𝑧) = 𝑖 → ((𝑥𝐼𝑋)‘(1st𝑧)) = ((𝑥𝐼𝑋)‘𝑖))
19 fveq2 6103 . . . . . . . . 9 ((2nd𝑧) = 𝑗 → ((𝑦𝐽𝑌)‘(2nd𝑧)) = ((𝑦𝐽𝑌)‘𝑗))
2018, 19oveqan12d 6568 . . . . . . . 8 (((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2120adantl 481 . . . . . . 7 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) = 𝑖 ∧ (2nd𝑧) = 𝑗)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2217, 21sylbi 206 . . . . . 6 (𝑧 = ⟨𝑖, 𝑗⟩ → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2322mpt2mpt 6650 . . . . 5 (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) = (𝑖𝐼, 𝑗𝐽 ↦ (((𝑥𝐼𝑋)‘𝑖) · ((𝑦𝐽𝑌)‘𝑗)))
2414, 23eqtr4i 2635 . . . 4 (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))))
25 simp2 1055 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑥𝐼)
26 evlslem4.x . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑋𝐵)
27263adant3 1074 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑋𝐵)
28 eqid 2610 . . . . . . . 8 (𝑥𝐼𝑋) = (𝑥𝐼𝑋)
2928fvmpt2 6200 . . . . . . 7 ((𝑥𝐼𝑋𝐵) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
3025, 27, 29syl2anc 691 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑥𝐼𝑋)‘𝑥) = 𝑋)
31 simp3 1056 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑦𝐽)
32 evlslem4.y . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑌𝐵)
33323adant2 1073 . . . . . . 7 ((𝜑𝑥𝐼𝑦𝐽) → 𝑌𝐵)
34 eqid 2610 . . . . . . . 8 (𝑦𝐽𝑌) = (𝑦𝐽𝑌)
3534fvmpt2 6200 . . . . . . 7 ((𝑦𝐽𝑌𝐵) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
3631, 33, 35syl2anc 691 . . . . . 6 ((𝜑𝑥𝐼𝑦𝐽) → ((𝑦𝐽𝑌)‘𝑦) = 𝑌)
3730, 36oveq12d 6567 . . . . 5 ((𝜑𝑥𝐼𝑦𝐽) → (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦)) = (𝑋 · 𝑌))
3837mpt2eq3dva 6617 . . . 4 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (((𝑥𝐼𝑋)‘𝑥) · ((𝑦𝐽𝑌)‘𝑦))) = (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)))
3924, 38syl5reqr 2659 . . 3 (𝜑 → (𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) = (𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))))
4039oveq1d 6564 . 2 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) = ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ))
41 difxp 5477 . . . . . 6 ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) = (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))
4241eleq2i 2680 . . . . 5 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ 𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
43 elun 3715 . . . . 5 (𝑧 ∈ (((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∪ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
4442, 43bitri 263 . . . 4 (𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 ))) ↔ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))))
45 xp1st 7089 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )))
4626, 28fmptd 6292 . . . . . . . . 9 (𝜑 → (𝑥𝐼𝑋):𝐼𝐵)
47 ssid 3587 . . . . . . . . . 10 ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 )
4847a1i 11 . . . . . . . . 9 (𝜑 → ((𝑥𝐼𝑋) supp 0 ) ⊆ ((𝑥𝐼𝑋) supp 0 ))
49 evlslem4.i . . . . . . . . 9 (𝜑𝐼𝑉)
50 evlslem4.z . . . . . . . . . . 11 0 = (0g𝑅)
51 fvex 6113 . . . . . . . . . . 11 (0g𝑅) ∈ V
5250, 51eqeltri 2684 . . . . . . . . . 10 0 ∈ V
5352a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
5446, 48, 49, 53suppssr 7213 . . . . . . . 8 ((𝜑 ∧ (1st𝑧) ∈ (𝐼 ∖ ((𝑥𝐼𝑋) supp 0 ))) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5545, 54sylan2 490 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑥𝐼𝑋)‘(1st𝑧)) = 0 )
5655oveq1d 6564 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))))
57 evlslem4.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
5857adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → 𝑅 ∈ Ring)
5932, 34fmptd 6292 . . . . . . . 8 (𝜑 → (𝑦𝐽𝑌):𝐽𝐵)
60 xp2nd 7090 . . . . . . . 8 (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) → (2nd𝑧) ∈ 𝐽)
61 ffvelrn 6265 . . . . . . . 8 (((𝑦𝐽𝑌):𝐽𝐵 ∧ (2nd𝑧) ∈ 𝐽) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
6259, 60, 61syl2an 493 . . . . . . 7 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵)
63 evlslem4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
64 evlslem4.t . . . . . . . 8 · = (.r𝑅)
6563, 64, 50ringlz 18410 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑦𝐽𝑌)‘(2nd𝑧)) ∈ 𝐵) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6658, 62, 65syl2anc 691 . . . . . 6 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → ( 0 · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
6756, 66eqtrd 2644 . . . . 5 ((𝜑𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽)) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
68 xp2nd 7090 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))
69 ssid 3587 . . . . . . . . . 10 ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 )
7069a1i 11 . . . . . . . . 9 (𝜑 → ((𝑦𝐽𝑌) supp 0 ) ⊆ ((𝑦𝐽𝑌) supp 0 ))
71 evlslem4.j . . . . . . . . 9 (𝜑𝐽𝑊)
7259, 70, 71, 53suppssr 7213 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
7368, 72sylan2 490 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑦𝐽𝑌)‘(2nd𝑧)) = 0 )
7473oveq2d 6565 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ))
7557adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → 𝑅 ∈ Ring)
76 xp1st 7089 . . . . . . . 8 (𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))) → (1st𝑧) ∈ 𝐼)
77 ffvelrn 6265 . . . . . . . 8 (((𝑥𝐼𝑋):𝐼𝐵 ∧ (1st𝑧) ∈ 𝐼) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7846, 76, 77syl2an 493 . . . . . . 7 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵)
7963, 64, 50ringrz 18411 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑥𝐼𝑋)‘(1st𝑧)) ∈ 𝐵) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
8075, 78, 79syl2anc 691 . . . . . 6 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · 0 ) = 0 )
8174, 80eqtrd 2644 . . . . 5 ((𝜑𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
8267, 81jaodan 822 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝐼 ∖ ((𝑥𝐼𝑋) supp 0 )) × 𝐽) ∨ 𝑧 ∈ (𝐼 × (𝐽 ∖ ((𝑦𝐽𝑌) supp 0 ))))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
8344, 82sylan2b 491 . . 3 ((𝜑𝑧 ∈ ((𝐼 × 𝐽) ∖ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))) → (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧))) = 0 )
84 xpexg 6858 . . . 4 ((𝐼𝑉𝐽𝑊) → (𝐼 × 𝐽) ∈ V)
8549, 71, 84syl2anc 691 . . 3 (𝜑 → (𝐼 × 𝐽) ∈ V)
8683, 85suppss2 7216 . 2 (𝜑 → ((𝑧 ∈ (𝐼 × 𝐽) ↦ (((𝑥𝐼𝑋)‘(1st𝑧)) · ((𝑦𝐽𝑌)‘(2nd𝑧)))) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
8740, 86eqsstrd 3602 1 (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  wss 3540  cop 4131  cmpt 4643   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058   supp csupp 7182  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Ringcrg 18370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ring 18372
This theorem is referenced by:  evlslem2  19333
  Copyright terms: Public domain W3C validator