MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef4p Structured version   Visualization version   GIF version

Theorem ef4p 14682
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypothesis
Ref Expression
ef4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef4p (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef4p
StepHypRef Expression
1 ef4p.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
2 df-4 10958 . 2 4 = (3 + 1)
3 3nn0 11187 . 2 3 ∈ ℕ0
4 id 22 . 2 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
5 ax-1cn 9873 . . . 4 1 ∈ ℂ
6 addcl 9897 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
75, 6mpan 702 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
8 sqcl 12787 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
98halfcld 11154 . . 3 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
107, 9addcld 9938 . 2 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / 2)) ∈ ℂ)
11 df-3 10957 . . 3 3 = (2 + 1)
12 2nn0 11186 . . 3 2 ∈ ℕ0
13 df-2 10956 . . . 4 2 = (1 + 1)
14 1nn0 11185 . . . 4 1 ∈ ℕ0
155a1i 11 . . . 4 (𝐴 ∈ ℂ → 1 ∈ ℂ)
16 1e0p1 11428 . . . . 5 1 = (0 + 1)
17 0nn0 11184 . . . . 5 0 ∈ ℕ0
18 0cnd 9912 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℂ)
191efval2 14653 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
20 nn0uz 11598 . . . . . . . . 9 0 = (ℤ‘0)
2120sumeq1i 14276 . . . . . . . 8 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)
2219, 21syl6req 2661 . . . . . . 7 (𝐴 ∈ ℂ → Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘) = (exp‘𝐴))
2322oveq2d 6565 . . . . . 6 (𝐴 ∈ ℂ → (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)) = (0 + (exp‘𝐴)))
24 efcl 14652 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2524addid2d 10116 . . . . . 6 (𝐴 ∈ ℂ → (0 + (exp‘𝐴)) = (exp‘𝐴))
2623, 25eqtr2d 2645 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (0 + Σ𝑘 ∈ (ℤ‘0)(𝐹𝑘)))
27 eft0val 14681 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2827oveq2d 6565 . . . . . 6 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = (0 + 1))
29 0p1e1 11009 . . . . . 6 (0 + 1) = 1
3028, 29syl6eq 2660 . . . . 5 (𝐴 ∈ ℂ → (0 + ((𝐴↑0) / (!‘0))) = 1)
311, 16, 17, 4, 18, 26, 30efsep 14679 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = (1 + Σ𝑘 ∈ (ℤ‘1)(𝐹𝑘)))
32 exp1 12728 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
33 fac1 12926 . . . . . . . 8 (!‘1) = 1
3433a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (!‘1) = 1)
3532, 34oveq12d 6567 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = (𝐴 / 1))
36 div1 10595 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3735, 36eqtrd 2644 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3837oveq2d 6565 . . . 4 (𝐴 ∈ ℂ → (1 + ((𝐴↑1) / (!‘1))) = (1 + 𝐴))
391, 13, 14, 4, 15, 31, 38efsep 14679 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = ((1 + 𝐴) + Σ𝑘 ∈ (ℤ‘2)(𝐹𝑘)))
40 fac2 12928 . . . . . 6 (!‘2) = 2
4140oveq2i 6560 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
4241oveq2i 6560 . . . 4 ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2))
4342a1i 11 . . 3 (𝐴 ∈ ℂ → ((1 + 𝐴) + ((𝐴↑2) / (!‘2))) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
441, 11, 12, 4, 7, 39, 43efsep 14679 . 2 (𝐴 ∈ ℂ → (exp‘𝐴) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + Σ𝑘 ∈ (ℤ‘3)(𝐹𝑘)))
45 fac3 12929 . . . . 5 (!‘3) = 6
4645oveq2i 6560 . . . 4 ((𝐴↑3) / (!‘3)) = ((𝐴↑3) / 6)
4746oveq2i 6560 . . 3 (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6))
4847a1i 11 . 2 (𝐴 ∈ ℂ → (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / (!‘3))) = (((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)))
491, 2, 3, 4, 10, 44, 48efsep 14679 1 (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   / cdiv 10563  2c2 10947  3c3 10948  4c4 10949  6c6 10951  0cn0 11169  cuz 11563  cexp 12722  !cfa 12922  Σcsu 14264  expce 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637
This theorem is referenced by:  efi4p  14706
  Copyright terms: Public domain W3C validator