Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Structured version   Visualization version   GIF version

Theorem dvhlveclem 35415
Description: Lemma for dvhlvec 35416. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
dvhlvec.m × = (.r𝐷)
dvhlvec.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvhlveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvhlveclem
Dummy variables 𝑡 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2610 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 35394 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2616 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . . 4 + = (+g𝑈)
98a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
1110a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
12 dvhlvec.s . . . 4 · = ( ·𝑠𝑈)
1312a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
14 eqid 2610 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 3, 4, 10, 14dvhbase 35390 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2616 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvhgrp.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvhlvec.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
21 eqid 2610 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
221, 21, 4, 10dvhsca 35389 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2322fveq2d 6107 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = (1r‘((EDRing‘𝐾)‘𝑊)))
24 eqid 2610 . . . . 5 (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊))
251, 2, 21, 24erng1r 35301 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇))
2623, 25eqtr2d 2645 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
271, 21erngdv 35299 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2822, 27eqeltrd 2688 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
29 drngring 18577 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
3028, 29syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
31 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
32 dvhgrp.o . . . 4 0 = (0g𝐷)
33 dvhgrp.i . . . 4 𝐼 = (invg𝐷)
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 35414 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
351, 2, 3, 4, 12dvhvscacl 35410 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
36353impb 1252 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡 ∈ (𝑇 × 𝐸)) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
37 simpl 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpr1 1060 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
39 simpr2 1061 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (𝑇 × 𝐸))
40 xp1st 7089 . . . . . . . 8 (𝑡 ∈ (𝑇 × 𝐸) → (1st𝑡) ∈ 𝑇)
4139, 40syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑡) ∈ 𝑇)
42 simpr3 1062 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
43 xp1st 7089 . . . . . . . 8 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
4442, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
451, 2, 3tendospdi1 35327 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (1st𝑡) ∈ 𝑇 ∧ (1st𝑓) ∈ 𝑇)) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
4637, 38, 41, 44, 45syl13anc 1320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
471, 2, 3, 4, 10, 8, 17dvhvadd 35399 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
48473adantr1 1213 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
4948fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
50 fvex 6113 . . . . . . . . . 10 (1st𝑡) ∈ V
51 fvex 6113 . . . . . . . . . 10 (1st𝑓) ∈ V
5250, 51coex 7011 . . . . . . . . 9 ((1st𝑡) ∘ (1st𝑓)) ∈ V
53 ovex 6577 . . . . . . . . 9 ((2nd𝑡) (2nd𝑓)) ∈ V
5452, 53op1st 7067 . . . . . . . 8 (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((1st𝑡) ∘ (1st𝑓))
5549, 54syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = ((1st𝑡) ∘ (1st𝑓)))
5655fveq2d 6107 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = (𝑠‘((1st𝑡) ∘ (1st𝑓))))
571, 2, 3, 4, 12dvhvsca 35408 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
58573adantr3 1215 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
5958fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
60 fvex 6113 . . . . . . . . 9 (𝑠‘(1st𝑡)) ∈ V
61 vex 3176 . . . . . . . . . 10 𝑠 ∈ V
62 fvex 6113 . . . . . . . . . 10 (2nd𝑡) ∈ V
6361, 62coex 7011 . . . . . . . . 9 (𝑠 ∘ (2nd𝑡)) ∈ V
6460, 63op1st 7067 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠‘(1st𝑡))
6559, 64syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (𝑠‘(1st𝑡)))
661, 2, 3, 4, 12dvhvsca 35408 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
67663adantr2 1214 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
6867fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
69 fvex 6113 . . . . . . . . 9 (𝑠‘(1st𝑓)) ∈ V
70 fvex 6113 . . . . . . . . . 10 (2nd𝑓) ∈ V
7161, 70coex 7011 . . . . . . . . 9 (𝑠 ∘ (2nd𝑓)) ∈ V
7269, 71op1st 7067 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠‘(1st𝑓))
7368, 72syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
7465, 73coeq12d 5208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
7546, 56, 743eqtr4d 2654 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))))
7630adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
7716adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
7838, 77eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
79 xp2nd 7090 . . . . . . . . . 10 (𝑡 ∈ (𝑇 × 𝐸) → (2nd𝑡) ∈ 𝐸)
8039, 79syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ 𝐸)
8180, 77eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ (Base‘𝐷))
82 xp2nd 7090 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
8342, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
8483, 77eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
8514, 17, 19ringdi 18389 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8676, 78, 81, 84, 85syl13anc 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8714, 17ringacl 18401 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8876, 81, 84, 87syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8988, 77eleqtrrd 2691 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)
901, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
9137, 38, 89, 90syl12anc 1316 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
921, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑡) ∈ 𝐸)) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
9337, 38, 80, 92syl12anc 1316 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
941, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9537, 38, 83, 94syl12anc 1316 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9693, 95oveq12d 6567 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9786, 91, 963eqtr3d 2652 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ ((2nd𝑡) (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9848fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
9952, 53op2nd 7068 . . . . . . . 8 (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((2nd𝑡) (2nd𝑓))
10098, 99syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = ((2nd𝑡) (2nd𝑓)))
101100coeq2d 5206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
10258fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
10360, 63op2nd 7068 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠 ∘ (2nd𝑡))
104102, 103syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (𝑠 ∘ (2nd𝑡)))
10567fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
10669, 71op2nd 7068 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠 ∘ (2nd𝑓))
107105, 106syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
108104, 107oveq12d 6567 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
10997, 101, 1083eqtr4d 2654 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))))
11075, 109opeq12d 4348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩ = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 35402 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1121113adantr1 1213 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1131, 2, 3, 4, 12dvhvsca 35408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
11437, 38, 112, 113syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
115353adantr3 1215 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
1161, 2, 3, 4, 12dvhvscacl 35410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1171163adantr2 1214 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1181, 2, 3, 4, 10, 8, 17dvhvadd 35399 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑡) ∈ (𝑇 × 𝐸) ∧ (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
11937, 115, 117, 118syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
120110, 114, 1193eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
121 simpl 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
122 simpr1 1060 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
123 simpr2 1061 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡𝐸)
124 simpr3 1062 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
125124, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
126 eqid 2610 . . . . . . . 8 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
1271, 2, 3, 21, 126erngplus2 35110 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇)) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
128121, 122, 123, 125, 127syl13anc 1320 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
12922fveq2d 6107 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
13017, 129syl5eq 2656 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
131130oveqd 6566 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 𝑡) = (𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡))
132131fveq1d 6105 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
133132adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
134663adantr2 1214 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
135134fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
136135, 72syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
1371, 2, 3, 4, 12dvhvsca 35408 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
1381373adantr1 1213 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
139138fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
140 fvex 6113 . . . . . . . . 9 (𝑡‘(1st𝑓)) ∈ V
141 vex 3176 . . . . . . . . . 10 𝑡 ∈ V
142141, 70coex 7011 . . . . . . . . 9 (𝑡 ∘ (2nd𝑓)) ∈ V
143140, 142op1st 7067 . . . . . . . 8 (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡‘(1st𝑓))
144139, 143syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (𝑡‘(1st𝑓)))
145136, 144coeq12d 5208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
146128, 133, 1453eqtr4d 2654 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))))
14730adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
14816adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
149122, 148eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
150123, 148eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (Base‘𝐷))
151124, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
152151, 148eleqtrd 2690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
15314, 17, 19ringdir 18390 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
154147, 149, 150, 152, 153syl13anc 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
15514, 17ringacl 18401 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ 𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷)) → (𝑠 𝑡) ∈ (Base‘𝐷))
156147, 149, 150, 155syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ (Base‘𝐷))
157156, 148eleqtrrd 2691 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ 𝐸)
1581, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
159121, 157, 151, 158syl12anc 1316 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
160121, 122, 151, 94syl12anc 1316 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
1611, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
162121, 123, 151, 161syl12anc 1316 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
163160, 162oveq12d 6567 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
164154, 159, 1633eqtr3d 2652 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
165134fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
166165, 106syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
167138fveq2d 6107 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
168140, 142op2nd 7068 . . . . . . . 8 (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡 ∘ (2nd𝑓))
169167, 168syl6eq 2660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (𝑡 ∘ (2nd𝑓)))
170166, 169oveq12d 6567 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
171164, 170eqtr4d 2647 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))))
172146, 171opeq12d 4348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩ = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
1731, 2, 3, 4, 12dvhvsca 35408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
174121, 157, 124, 173syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
1751163adantr2 1214 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1761, 2, 3, 4, 12dvhvscacl 35410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1771763adantr1 1213 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1781, 2, 3, 4, 10, 8, 17dvhvadd 35399 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑓) ∈ (𝑇 × 𝐸) ∧ (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
179121, 175, 177, 178syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
180172, 174, 1793eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1811, 2, 3tendocoval 35072 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸) ∧ (1st𝑓) ∈ 𝑇) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
182121, 122, 123, 125, 181syl121anc 1323 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
183 coass 5571 . . . . . . 7 ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))
184183a1i 11 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓))))
185182, 184opeq12d 4348 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩ = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
1861, 3tendococl 35078 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
187121, 122, 123, 186syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠𝑡) ∈ 𝐸)
1881, 2, 3, 4, 12dvhvsca 35408 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
189121, 187, 124, 188syl12anc 1316 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
1901, 2, 3tendocl 35073 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇) → (𝑡‘(1st𝑓)) ∈ 𝑇)
191121, 123, 125, 190syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡‘(1st𝑓)) ∈ 𝑇)
1921, 3tendococl 35078 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
193121, 123, 151, 192syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
1941, 2, 3, 4, 12dvhopvsca 35409 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡‘(1st𝑓)) ∈ 𝑇 ∧ (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
195121, 122, 191, 193, 194syl13anc 1320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
196185, 189, 1953eqtr4d 2654 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
1971, 2, 3, 4, 10, 19dvhmulr 35393 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1981973adantr3 1215 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × 𝑡) = (𝑠𝑡))
199198oveq1d 6564 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
200138oveq2d 6565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
201196, 199, 2003eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
202 xp1st 7089 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (1st𝑠) ∈ 𝑇)
203202adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (1st𝑠) ∈ 𝑇)
204 tendospid 35324 . . . . . 6 ((1st𝑠) ∈ 𝑇 → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
205203, 204syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
206 xp2nd 7090 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (2nd𝑠) ∈ 𝐸)
2071, 2, 3tendof 35069 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑠) ∈ 𝐸) → (2nd𝑠):𝑇𝑇)
208206, 207sylan2 490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (2nd𝑠):𝑇𝑇)
209 fcoi2 5992 . . . . . 6 ((2nd𝑠):𝑇𝑇 → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
210208, 209syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
211205, 210opeq12d 4348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩ = ⟨(1st𝑠), (2nd𝑠)⟩)
2121, 2, 3tendoidcl 35075 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
213212anim1i 590 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸)))
2141, 2, 3, 4, 12dvhvsca 35408 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸))) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
215213, 214syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
216 1st2nd2 7096 . . . . 5 (𝑠 ∈ (𝑇 × 𝐸) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
217216adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
218211, 215, 2173eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 18692 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
22010islvec 18925 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
221219, 28, 220sylanbrc 695 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cop 4131   I cid 4948   × cxp 5036  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  invgcminusg 17246  1rcur 18324  Ringcrg 18370  DivRingcdr 18570  LModclmod 18686  LVecclvec 18923  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  EDRingcedring 35059  DVecHcdvh 35385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lvec 18924  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063  df-dvech 35386
This theorem is referenced by:  dvhlvec  35416
  Copyright terms: Public domain W3C validator