Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Unicode version

Theorem dvhlveclem 31591
Description: Lemma for dvhlvec 31592. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does  ph  -> method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b  |-  B  =  ( Base `  K
)
dvhgrp.h  |-  H  =  ( LHyp `  K
)
dvhgrp.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhgrp.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhgrp.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhgrp.d  |-  D  =  (Scalar `  U )
dvhgrp.p  |-  .+^  =  ( +g  `  D )
dvhgrp.a  |-  .+  =  ( +g  `  U )
dvhgrp.o  |-  .0.  =  ( 0g `  D )
dvhgrp.i  |-  I  =  ( inv g `  D )
dvhlvec.m  |-  .X.  =  ( .r `  D )
dvhlvec.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvhlveclem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )

Proof of Theorem dvhlveclem
Dummy variables  t 
f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 dvhgrp.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvhgrp.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
4 dvhgrp.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
5 eqid 2404 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
61, 2, 3, 4, 5dvhvbase 31570 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( T  X.  E ) )
76eqcomd 2409 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( T  X.  E
)  =  ( Base `  U ) )
8 dvhgrp.a . . . 4  |-  .+  =  ( +g  `  U )
98a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
10 dvhgrp.d . . . 4  |-  D  =  (Scalar `  U )
1110a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  (Scalar `  U ) )
12 dvhlvec.s . . . 4  |-  .x.  =  ( .s `  U )
1312a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .x.  =  ( .s
`  U ) )
14 eqid 2404 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
151, 3, 4, 10, 14dvhbase 31566 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
1615eqcomd 2409 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
17 dvhgrp.p . . . 4  |-  .+^  =  ( +g  `  D )
1817a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  D ) )
19 dvhlvec.m . . . 4  |-  .X.  =  ( .r `  D )
2019a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .X.  =  ( .r
`  D ) )
21 eqid 2404 . . . . . 6  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
221, 21, 4, 10dvhsca 31565 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
2322fveq2d 5691 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  ( 1r
`  ( ( EDRing `  K ) `  W
) ) )
24 eqid 2404 . . . . 5  |-  ( 1r
`  ( ( EDRing `  K ) `  W
) )  =  ( 1r `  ( (
EDRing `  K ) `  W ) )
251, 2, 21, 24erng1r 31477 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  (
( EDRing `  K ) `  W ) )  =  (  _I  |`  T ) )
2623, 25eqtr2d 2437 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =  ( 1r `  D ) )
271, 21erngdv 31475 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
2822, 27eqeltrd 2478 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
29 drngrng 15797 . . . 4  |-  ( D  e.  DivRing  ->  D  e.  Ring )
3028, 29syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
31 dvhgrp.b . . . 4  |-  B  =  ( Base `  K
)
32 dvhgrp.o . . . 4  |-  .0.  =  ( 0g `  D )
33 dvhgrp.i . . . 4  |-  I  =  ( inv g `  D )
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 31590 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
351, 2, 3, 4, 12dvhvscacl 31586 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  e.  ( T  X.  E ) )
36353impb 1149 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  ( T  X.  E ) )  ->  ( s  .x.  t )  e.  ( T  X.  E ) )
37 simpl 444 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
38 simpr1 963 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  E )
39 simpr2 964 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  ( T  X.  E ) )
40 xp1st 6335 . . . . . . . 8  |-  ( t  e.  ( T  X.  E )  ->  ( 1st `  t )  e.  T )
4139, 40syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  t
)  e.  T )
42 simpr3 965 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
f  e.  ( T  X.  E ) )
43 xp1st 6335 . . . . . . . 8  |-  ( f  e.  ( T  X.  E )  ->  ( 1st `  f )  e.  T )
4442, 43syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  f
)  e.  T )
451, 2, 3tendospdi1 31503 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 1st `  t )  e.  T  /\  ( 1st `  f
)  e.  T ) )  ->  ( s `  ( ( 1st `  t
)  o.  ( 1st `  f ) ) )  =  ( ( s `
 ( 1st `  t
) )  o.  (
s `  ( 1st `  f ) ) ) )
4637, 38, 41, 44, 45syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  (
( 1st `  t
)  o.  ( 1st `  f ) ) )  =  ( ( s `
 ( 1st `  t
) )  o.  (
s `  ( 1st `  f ) ) ) )
471, 2, 3, 4, 10, 8, 17dvhvadd 31575 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  =  <. (
( 1st `  t
)  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) >. )
48473adantr1 1116 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  =  <. (
( 1st `  t
)  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) >. )
4948fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .+  f )
)  =  ( 1st `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
) )
50 fvex 5701 . . . . . . . . . 10  |-  ( 1st `  t )  e.  _V
51 fvex 5701 . . . . . . . . . 10  |-  ( 1st `  f )  e.  _V
5250, 51coex 5372 . . . . . . . . 9  |-  ( ( 1st `  t )  o.  ( 1st `  f
) )  e.  _V
53 ovex 6065 . . . . . . . . 9  |-  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )  e.  _V
5452, 53op1st 6314 . . . . . . . 8  |-  ( 1st `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
)  =  ( ( 1st `  t )  o.  ( 1st `  f
) )
5549, 54syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .+  f )
)  =  ( ( 1st `  t )  o.  ( 1st `  f
) ) )
5655fveq2d 5691 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  ( 1st `  ( t  .+  f ) ) )  =  ( s `  ( ( 1st `  t
)  o.  ( 1st `  f ) ) ) )
571, 2, 3, 4, 12dvhvsca 31584 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  =  <. (
s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t ) )
>. )
58573adantr3 1118 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  =  <. (
s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t ) )
>. )
5958fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  t )
)  =  ( 1st `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )
)
60 fvex 5701 . . . . . . . . 9  |-  ( s `
 ( 1st `  t
) )  e.  _V
61 vex 2919 . . . . . . . . . 10  |-  s  e. 
_V
62 fvex 5701 . . . . . . . . . 10  |-  ( 2nd `  t )  e.  _V
6361, 62coex 5372 . . . . . . . . 9  |-  ( s  o.  ( 2nd `  t
) )  e.  _V
6460, 63op1st 6314 . . . . . . . 8  |-  ( 1st `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )  =  ( s `  ( 1st `  t ) )
6559, 64syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  t )
)  =  ( s `
 ( 1st `  t
) ) )
661, 2, 3, 4, 12dvhvsca 31584 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
67663adantr2 1117 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
6867fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
69 fvex 5701 . . . . . . . . 9  |-  ( s `
 ( 1st `  f
) )  e.  _V
70 fvex 5701 . . . . . . . . . 10  |-  ( 2nd `  f )  e.  _V
7161, 70coex 5372 . . . . . . . . 9  |-  ( s  o.  ( 2nd `  f
) )  e.  _V
7269, 71op1st 6314 . . . . . . . 8  |-  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )  =  ( s `  ( 1st `  f ) )
7368, 72syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( s `
 ( 1st `  f
) ) )
7465, 73coeq12d 4996 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) )  =  ( ( s `  ( 1st `  t ) )  o.  ( s `
 ( 1st `  f
) ) ) )
7546, 56, 743eqtr4d 2446 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  ( 1st `  ( t  .+  f ) ) )  =  ( ( 1st `  ( s  .x.  t
) )  o.  ( 1st `  ( s  .x.  f ) ) ) )
7630adantr 452 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  D  e.  Ring )
7716adantr 452 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  E  =  ( Base `  D ) )
7838, 77eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  ( Base `  D ) )
79 xp2nd 6336 . . . . . . . . . 10  |-  ( t  e.  ( T  X.  E )  ->  ( 2nd `  t )  e.  E )
8039, 79syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  t
)  e.  E )
8180, 77eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  t
)  e.  ( Base `  D ) )
82 xp2nd 6336 . . . . . . . . . 10  |-  ( f  e.  ( T  X.  E )  ->  ( 2nd `  f )  e.  E )
8342, 82syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  E )
8483, 77eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  ( Base `  D ) )
8514, 17, 19rngdi 15637 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  (
s  e.  ( Base `  D )  /\  ( 2nd `  t )  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
) )  ->  (
s  .X.  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) )  =  ( ( s  .X.  ( 2nd `  t ) ) 
.+^  ( s  .X.  ( 2nd `  f ) ) ) )
8676, 78, 81, 84, 85syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( ( s  .X.  ( 2nd `  t ) )  .+^  ( s  .X.  ( 2nd `  f
) ) ) )
8714, 17rngacl 15646 . . . . . . . . . 10  |-  ( ( D  e.  Ring  /\  ( 2nd `  t )  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
)  ->  ( ( 2nd `  t )  .+^  ( 2nd `  f ) )  e.  ( Base `  D ) )
8876, 81, 84, 87syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  t
)  .+^  ( 2nd `  f
) )  e.  (
Base `  D )
)
8988, 77eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  t
)  .+^  ( 2nd `  f
) )  e.  E
)
901, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )  e.  E
) )  ->  (
s  .X.  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) )  =  ( s  o.  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) ) ) )
9137, 38, 89, 90syl12anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( s  o.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) ) )
921, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 2nd `  t )  e.  E
) )  ->  (
s  .X.  ( 2nd `  t ) )  =  ( s  o.  ( 2nd `  t ) ) )
9337, 38, 80, 92syl12anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  t ) )  =  ( s  o.  ( 2nd `  t
) ) )
941, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f ) ) )
9537, 38, 83, 94syl12anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f
) ) )
9693, 95oveq12d 6058 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  ( 2nd `  t ) )  .+^  ( s  .X.  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  t
) )  .+^  ( s  o.  ( 2nd `  f
) ) ) )
9786, 91, 963eqtr3d 2444 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  t
) )  .+^  ( s  o.  ( 2nd `  f
) ) ) )
9848fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .+  f )
)  =  ( 2nd `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
) )
9952, 53op2nd 6315 . . . . . . . 8  |-  ( 2nd `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
)  =  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )
10098, 99syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .+  f )
)  =  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) ) )
101100coeq2d 4994 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  ( 2nd `  ( t  .+  f ) ) )  =  ( s  o.  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) ) )
10258fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  t )
)  =  ( 2nd `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )
)
10360, 63op2nd 6315 . . . . . . . 8  |-  ( 2nd `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )  =  ( s  o.  ( 2nd `  t
) )
104102, 103syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  t )
)  =  ( s  o.  ( 2nd `  t
) ) )
10567fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
10669, 71op2nd 6315 . . . . . . . 8  |-  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )  =  ( s  o.  ( 2nd `  f
) )
107105, 106syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( s  o.  ( 2nd `  f
) ) )
108104, 107oveq12d 6058 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) )  =  ( ( s  o.  ( 2nd `  t ) ) 
.+^  ( s  o.  ( 2nd `  f
) ) ) )
10997, 101, 1083eqtr4d 2446 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  ( 2nd `  ( t  .+  f ) ) )  =  ( ( 2nd `  ( s  .x.  t
) )  .+^  ( 2nd `  ( s  .x.  f
) ) ) )
11075, 109opeq12d 3952 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( s `  ( 1st `  ( t  .+  f ) ) ) ,  ( s  o.  ( 2nd `  (
t  .+  f )
) ) >.  =  <. ( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 31578 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  e.  ( T  X.  E ) )
1121113adantr1 1116 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  e.  ( T  X.  E ) )
1131, 2, 3, 4, 12dvhvsca 31584 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t 
.+  f )  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  <. (
s `  ( 1st `  ( t  .+  f
) ) ) ,  ( s  o.  ( 2nd `  ( t  .+  f ) ) )
>. )
11437, 38, 112, 113syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  <. (
s `  ( 1st `  ( t  .+  f
) ) ) ,  ( s  o.  ( 2nd `  ( t  .+  f ) ) )
>. )
115353adantr3 1118 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  e.  ( T  X.  E ) )
1161, 2, 3, 4, 12dvhvscacl 31586 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1171163adantr2 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1181, 2, 3, 4, 10, 8, 17dvhvadd 31575 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.x.  t )  e.  ( T  X.  E
)  /\  ( s  .x.  f )  e.  ( T  X.  E ) ) )  ->  (
( s  .x.  t
)  .+  ( s  .x.  f ) )  = 
<. ( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
11937, 115, 117, 118syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .x.  t )  .+  (
s  .x.  f )
)  =  <. (
( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
120110, 114, 1193eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( ( s  .x.  t ) 
.+  ( s  .x.  f ) ) )
121 simpl 444 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
122 simpr1 963 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  E )
123 simpr2 964 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  E )
124 simpr3 965 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
f  e.  ( T  X.  E ) )
125124, 43syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  f
)  e.  T )
126 eqid 2404 . . . . . . . 8  |-  ( +g  `  ( ( EDRing `  K
) `  W )
)  =  ( +g  `  ( ( EDRing `  K
) `  W )
)
1271, 2, 3, 21, 126erngplus2 31286 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  ( 1st `  f )  e.  T
) )  ->  (
( s ( +g  `  ( ( EDRing `  K
) `  W )
) t ) `  ( 1st `  f ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `  ( 1st `  f ) ) ) )
128121, 122, 123, 125, 127syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s ( +g  `  ( (
EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `
 ( 1st `  f
) ) ) )
12922fveq2d 5691 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( +g  `  ( ( EDRing `  K
) `  W )
) )
13017, 129syl5eq 2448 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  ( ( EDRing `  K
) `  W )
) )
131130oveqd 6057 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s  .+^  t )  =  ( s ( +g  `  ( (
EDRing `  K ) `  W ) ) t ) )
132131fveq1d 5689 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( s ( +g  `  (
( EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) ) )
133132adantr 452 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( s ( +g  `  (
( EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) ) )
134663adantr2 1117 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
135134fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
136135, 72syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( s `
 ( 1st `  f
) ) )
1371, 2, 3, 4, 12dvhvsca 31584 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  =  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )
1381373adantr1 1116 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  =  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )
139138fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .x.  f )
)  =  ( 1st `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
140 fvex 5701 . . . . . . . . 9  |-  ( t `
 ( 1st `  f
) )  e.  _V
141 vex 2919 . . . . . . . . . 10  |-  t  e. 
_V
142141, 70coex 5372 . . . . . . . . 9  |-  ( t  o.  ( 2nd `  f
) )  e.  _V
143140, 142op1st 6314 . . . . . . . 8  |-  ( 1st `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  ( t `  ( 1st `  f ) )
144139, 143syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .x.  f )
)  =  ( t `
 ( 1st `  f
) ) )
145136, 144coeq12d 4996 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `
 ( 1st `  f
) ) ) )
146128, 133, 1453eqtr4d 2446 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( 1st `  ( s  .x.  f
) )  o.  ( 1st `  ( t  .x.  f ) ) ) )
14730adantr 452 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  D  e.  Ring )
14816adantr 452 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  E  =  ( Base `  D ) )
149122, 148eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  ( Base `  D ) )
150123, 148eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  ( Base `  D ) )
151124, 82syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  E )
152151, 148eleqtrd 2480 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  ( Base `  D ) )
15314, 17, 19rngdir 15638 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  (
s  e.  ( Base `  D )  /\  t  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
) )  ->  (
( s  .+^  t ) 
.X.  ( 2nd `  f
) )  =  ( ( s  .X.  ( 2nd `  f ) ) 
.+^  ( t  .X.  ( 2nd `  f ) ) ) )
154147, 149, 150, 152, 153syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .X.  ( 2nd `  f ) )  =  ( ( s 
.X.  ( 2nd `  f
) )  .+^  ( t 
.X.  ( 2nd `  f
) ) ) )
15514, 17rngacl 15646 . . . . . . . . . 10  |-  ( ( D  e.  Ring  /\  s  e.  ( Base `  D
)  /\  t  e.  ( Base `  D )
)  ->  ( s  .+^  t )  e.  (
Base `  D )
)
156147, 149, 150, 155syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .+^  t )  e.  ( Base `  D
) )
157156, 148eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .+^  t )  e.  E )
1581, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
( s  .+^  t ) 
.X.  ( 2nd `  f
) )  =  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) )
159121, 157, 151, 158syl12anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .X.  ( 2nd `  f ) )  =  ( ( s 
.+^  t )  o.  ( 2nd `  f
) ) )
160121, 122, 151, 94syl12anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f
) ) )
1611, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
t  .X.  ( 2nd `  f ) )  =  ( t  o.  ( 2nd `  f ) ) )
162121, 123, 151, 161syl12anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .X.  ( 2nd `  f ) )  =  ( t  o.  ( 2nd `  f
) ) )
163160, 162oveq12d 6058 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  ( 2nd `  f ) )  .+^  ( t  .X.  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  f
) )  .+^  ( t  o.  ( 2nd `  f
) ) ) )
164154, 159, 1633eqtr3d 2444 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  o.  ( 2nd `  f ) )  =  ( ( s  o.  ( 2nd `  f
) )  .+^  ( t  o.  ( 2nd `  f
) ) ) )
165134fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
166165, 106syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( s  o.  ( 2nd `  f
) ) )
167138fveq2d 5691 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .x.  f )
)  =  ( 2nd `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
168140, 142op2nd 6315 . . . . . . . 8  |-  ( 2nd `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  ( t  o.  ( 2nd `  f
) )
169167, 168syl6eq 2452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .x.  f )
)  =  ( t  o.  ( 2nd `  f
) ) )
170166, 169oveq12d 6058 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) )  =  ( ( s  o.  ( 2nd `  f ) ) 
.+^  ( t  o.  ( 2nd `  f
) ) ) )
171164, 170eqtr4d 2439 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  o.  ( 2nd `  f ) )  =  ( ( 2nd `  ( s  .x.  f
) )  .+^  ( 2nd `  ( t  .x.  f
) ) ) )
172146, 171opeq12d 3952 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( ( s  .+^  t ) `  ( 1st `  f ) ) ,  ( ( s 
.+^  t )  o.  ( 2nd `  f
) ) >.  =  <. ( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
1731, 2, 3, 4, 12dvhvsca 31584 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  <. (
( s  .+^  t ) `
 ( 1st `  f
) ) ,  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) >. )
174121, 157, 124, 173syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  <. (
( s  .+^  t ) `
 ( 1st `  f
) ) ,  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) >. )
1751163adantr2 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1761, 2, 3, 4, 12dvhvscacl 31586 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  e.  ( T  X.  E ) )
1771763adantr1 1116 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  e.  ( T  X.  E ) )
1781, 2, 3, 4, 10, 8, 17dvhvadd 31575 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.x.  f )  e.  ( T  X.  E
)  /\  ( t  .x.  f )  e.  ( T  X.  E ) ) )  ->  (
( s  .x.  f
)  .+  ( t  .x.  f ) )  = 
<. ( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
179121, 175, 177, 178syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  <. (
( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
180172, 174, 1793eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .x.  f ) 
.+  ( t  .x.  f ) ) )
1811, 2, 3tendocoval 31248 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E )  /\  ( 1st `  f )  e.  T )  ->  (
( s  o.  t
) `  ( 1st `  f ) )  =  ( s `  (
t `  ( 1st `  f ) ) ) )
182121, 122, 123, 125, 181syl121anc 1189 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t ) `  ( 1st `  f ) )  =  ( s `  ( t `  ( 1st `  f ) ) ) )
183 coass 5347 . . . . . . 7  |-  ( ( s  o.  t )  o.  ( 2nd `  f
) )  =  ( s  o.  ( t  o.  ( 2nd `  f
) ) )
184183a1i 11 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  o.  ( 2nd `  f ) )  =  ( s  o.  ( t  o.  ( 2nd `  f ) ) ) )
185182, 184opeq12d 3952 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( ( s  o.  t ) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f
) ) >.  =  <. ( s `  ( t `
 ( 1st `  f
) ) ) ,  ( s  o.  (
t  o.  ( 2nd `  f ) ) )
>. )
1861, 3tendococl 31254 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  o.  t )  e.  E
)
187121, 122, 123, 186syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  t
)  e.  E )
1881, 2, 3, 4, 12dvhvsca 31584 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  t )  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  <. (
( s  o.  t
) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f ) )
>. )
189121, 187, 124, 188syl12anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  <. (
( s  o.  t
) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f ) )
>. )
1901, 2, 3tendocl 31249 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  ( 1st `  f
)  e.  T )  ->  ( t `  ( 1st `  f ) )  e.  T )
191121, 123, 125, 190syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t `  ( 1st `  f ) )  e.  T )
1921, 3tendococl 31254 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  ( 2nd `  f
)  e.  E )  ->  ( t  o.  ( 2nd `  f
) )  e.  E
)
193121, 123, 151, 192syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  o.  ( 2nd `  f ) )  e.  E )
1941, 2, 3, 4, 12dvhopvsca 31585 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t `
 ( 1st `  f
) )  e.  T  /\  ( t  o.  ( 2nd `  f ) )  e.  E ) )  ->  ( s  .x.  <.
( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  <. ( s `  ( t `  ( 1st `  f ) ) ) ,  ( s  o.  ( t  o.  ( 2nd `  f
) ) ) >.
)
195121, 122, 191, 193, 194syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )  =  <. ( s `  ( t `
 ( 1st `  f
) ) ) ,  ( s  o.  (
t  o.  ( 2nd `  f ) ) )
>. )
196185, 189, 1953eqtr4d 2446 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( s 
.x.  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
1971, 2, 3, 4, 10, 19dvhmulr 31569 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
1981973adantr3 1118 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
199198oveq1d 6055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( ( s  o.  t ) 
.x.  f ) )
200138oveq2d 6056 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .x.  f )
)  =  ( s 
.x.  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
201196, 199, 2003eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( s 
.x.  ( t  .x.  f ) ) )
202 xp1st 6335 . . . . . . 7  |-  ( s  e.  ( T  X.  E )  ->  ( 1st `  s )  e.  T )
203202adantl 453 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( 1st `  s )  e.  T
)
204 tendospid 31500 . . . . . 6  |-  ( ( 1st `  s )  e.  T  ->  (
(  _I  |`  T ) `
 ( 1st `  s
) )  =  ( 1st `  s ) )
205203, 204syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T ) `  ( 1st `  s ) )  =  ( 1st `  s ) )
206 xp2nd 6336 . . . . . . 7  |-  ( s  e.  ( T  X.  E )  ->  ( 2nd `  s )  e.  E )
2071, 2, 3tendof 31245 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  s
)  e.  E )  ->  ( 2nd `  s
) : T --> T )
208206, 207sylan2 461 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( 2nd `  s ) : T --> T )
209 fcoi2 5577 . . . . . 6  |-  ( ( 2nd `  s ) : T --> T  -> 
( (  _I  |`  T )  o.  ( 2nd `  s
) )  =  ( 2nd `  s ) )
210208, 209syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  o.  ( 2nd `  s
) )  =  ( 2nd `  s ) )
211205, 210opeq12d 3952 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  <. ( (  _I  |`  T ) `  ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >.  =  <. ( 1st `  s ) ,  ( 2nd `  s
) >. )
2121, 2, 3tendoidcl 31251 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
213212anim1i 552 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  e.  E  /\  s  e.  ( T  X.  E
) ) )
2141, 2, 3, 4, 12dvhvsca 31584 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  ( T  X.  E ) ) )  ->  ( (  _I  |`  T )  .x.  s )  =  <. ( (  _I  |`  T ) `
 ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >. )
215213, 214syldan 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  .x.  s )  =  <. ( (  _I  |`  T ) `
 ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >. )
216 1st2nd2 6345 . . . . 5  |-  ( s  e.  ( T  X.  E )  ->  s  =  <. ( 1st `  s
) ,  ( 2nd `  s ) >. )
217216adantl 453 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  s  =  <. ( 1st `  s
) ,  ( 2nd `  s ) >. )
218211, 215, 2173eqtr4d 2446 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  .x.  s )  =  s )
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 15911 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
22010islvec 16131 . 2  |-  ( U  e.  LVec  <->  ( U  e. 
LMod  /\  D  e.  DivRing ) )
221219, 28, 220sylanbrc 646 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777    _I cid 4453    X. cxp 4835    |` cres 4839    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   0gc0g 13678   inv gcminusg 14641   Ringcrg 15615   1rcur 15617   DivRingcdr 15790   LModclmod 15905   LVecclvec 16129   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   EDRingcedring 31235   DVecHcdvh 31561
This theorem is referenced by:  dvhlvec  31592
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-grp 14767  df-minusg 14768  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lvec 16130  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-dvech 31562
  Copyright terms: Public domain W3C validator