Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   GIF version

Theorem diophren 36395
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Distinct variable groups:   𝑆,𝑎   𝑀,𝑎   𝑁,𝑎   𝐹,𝑎

Proof of Theorem diophren
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11263 . . . . . 6 ℤ ∈ V
2 difexg 4735 . . . . . 6 (ℤ ∈ V → (ℤ ∖ ℕ) ∈ V)
31, 2ax-mp 5 . . . . 5 (ℤ ∖ ℕ) ∈ V
4 ominf 8057 . . . . . 6 ¬ ω ∈ Fin
5 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
6 0p1e1 11009 . . . . . . . . . . 11 (0 + 1) = 1
76fveq2i 6106 . . . . . . . . . 10 (ℤ‘(0 + 1)) = (ℤ‘1)
85, 7eqtr4i 2635 . . . . . . . . 9 ℕ = (ℤ‘(0 + 1))
98difeq2i 3687 . . . . . . . 8 (ℤ ∖ ℕ) = (ℤ ∖ (ℤ‘(0 + 1)))
10 0z 11265 . . . . . . . . 9 0 ∈ ℤ
11 lzenom 36351 . . . . . . . . 9 (0 ∈ ℤ → (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω)
1210, 11ax-mp 5 . . . . . . . 8 (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω
139, 12eqbrtri 4604 . . . . . . 7 (ℤ ∖ ℕ) ≈ ω
14 enfi 8061 . . . . . . 7 ((ℤ ∖ ℕ) ≈ ω → ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . . . 6 ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin)
164, 15mtbir 312 . . . . 5 ¬ (ℤ ∖ ℕ) ∈ Fin
17 incom 3767 . . . . . 6 ((ℤ ∖ ℕ) ∩ ℕ) = (ℕ ∩ (ℤ ∖ ℕ))
18 disjdif 3992 . . . . . 6 (ℕ ∩ (ℤ ∖ ℕ)) = ∅
1917, 18eqtri 2632 . . . . 5 ((ℤ ∖ ℕ) ∩ ℕ) = ∅
203, 16, 19eldioph4b 36393 . . . 4 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
21 simpr 476 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → 𝑎 ∈ (ℕ0𝑚 (1...𝑀)))
22 simp-4r 803 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → 𝐹:(1...𝑁)⟶(1...𝑀))
23 ovex 6577 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
2423mapco2 36296 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)))
2521, 22, 24syl2anc 691 . . . . . . . . . . 11 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → (𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)))
26 uneq1 3722 . . . . . . . . . . . . . . 15 (𝑐 = (𝑎𝐹) → (𝑐𝑑) = ((𝑎𝐹) ∪ 𝑑))
2726fveq2d 6107 . . . . . . . . . . . . . 14 (𝑐 = (𝑎𝐹) → (𝑏‘(𝑐𝑑)) = (𝑏‘((𝑎𝐹) ∪ 𝑑)))
2827eqeq1d 2612 . . . . . . . . . . . . 13 (𝑐 = (𝑎𝐹) → ((𝑏‘(𝑐𝑑)) = 0 ↔ (𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2928rexbidv 3034 . . . . . . . . . . . 12 (𝑐 = (𝑎𝐹) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
3029elrab3 3332 . . . . . . . . . . 11 ((𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
3125, 30syl 17 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
32 simp-5r 805 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
33 simplr 788 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑎 ∈ (ℕ0𝑚 (1...𝑀)))
34 simpr 476 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)))
35 coundi 5553 . . . . . . . . . . . . . . . 16 ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))))
36 coundir 5554 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ (𝑑𝐹))
37 elmapi 7765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
38373ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
39 simp1 1054 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
40 incom 3767 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ ∖ ℕ))
41 fz1ssnn 12243 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑀) ⊆ ℕ
42 ssdisj 3978 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1...𝑀) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅)
4341, 18, 42mp2an 704 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅
4440, 43eqtri 2632 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅)
46 coeq0i 36334 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑:(ℤ ∖ ℕ)⟶ℕ0𝐹:(1...𝑁)⟶(1...𝑀) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅) → (𝑑𝐹) = ∅)
4738, 39, 45, 46syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑑𝐹) = ∅)
4847uneq2d 3729 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ (𝑑𝐹)) = ((𝑎𝐹) ∪ ∅))
4936, 48syl5eq 2656 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ ∅))
50 un0 3919 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐹) ∪ ∅) = (𝑎𝐹)
5149, 50syl6eq 2660 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = (𝑎𝐹))
52 coundir 5554 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))))
53 elmapi 7765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℕ0𝑚 (1...𝑀)) → 𝑎:(1...𝑀)⟶ℕ0)
54533ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑎:(1...𝑀)⟶ℕ0)
55 f1oi 6086 . . . . . . . . . . . . . . . . . . . . . . 23 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ)
56 f1of 6050 . . . . . . . . . . . . . . . . . . . . . . 23 (( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ)
58 coeq0i 36334 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎:(1...𝑀)⟶ℕ0 ∧ ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5957, 43, 58mp3an23 1408 . . . . . . . . . . . . . . . . . . . . 21 (𝑎:(1...𝑀)⟶ℕ0 → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
6054, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
61 coires1 5570 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = (𝑑 ↾ (ℤ ∖ ℕ))
62 ffn 5958 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑:(ℤ ∖ ℕ)⟶ℕ0𝑑 Fn (ℤ ∖ ℕ))
63 fnresdm 5914 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 Fn (ℤ ∖ ℕ) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6437, 62, 633syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6561, 64syl5eq 2656 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
66653ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
6760, 66uneq12d 3730 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ)))) = (∅ ∪ 𝑑))
6852, 67syl5eq 2656 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = (∅ ∪ 𝑑))
69 uncom 3719 . . . . . . . . . . . . . . . . . . 19 (∅ ∪ 𝑑) = (𝑑 ∪ ∅)
70 un0 3919 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∪ ∅) = 𝑑
7169, 70eqtri 2632 . . . . . . . . . . . . . . . . . 18 (∅ ∪ 𝑑) = 𝑑
7268, 71syl6eq 2660 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
7351, 72uneq12d 3730 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝐹) ∪ 𝑑))
7435, 73syl5req 2657 . . . . . . . . . . . . . . 15 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7532, 33, 34, 74syl3anc 1318 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7675fveq2d 6107 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
77 nn0ssz 11275 . . . . . . . . . . . . . . . . 17 0 ⊆ ℤ
78 mapss 7786 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
791, 77, 78mp2an 704 . . . . . . . . . . . . . . . 16 (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀)))
8043reseq2i 5314 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑎 ↾ ∅)
81 res0 5321 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ∅) = ∅
8280, 81eqtri 2632 . . . . . . . . . . . . . . . . . 18 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8343reseq2i 5314 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ∅)
84 res0 5321 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ∅) = ∅
8583, 84eqtri 2632 . . . . . . . . . . . . . . . . . 18 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8682, 85eqtr4i 2635 . . . . . . . . . . . . . . . . 17 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))
87 elmapresaun 36352 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((1...𝑀) ∪ (ℤ ∖ ℕ))))
88 uncom 3719 . . . . . . . . . . . . . . . . . . 19 ((1...𝑀) ∪ (ℤ ∖ ℕ)) = ((ℤ ∖ ℕ) ∪ (1...𝑀))
8988oveq2i 6560 . . . . . . . . . . . . . . . . . 18 (ℕ0𝑚 ((1...𝑀) ∪ (ℤ ∖ ℕ))) = (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀)))
9087, 89syl6eleq 2698 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9186, 90mp3an3 1405 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9279, 91sseldi 3566 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9392adantll 746 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
94 coeq1 5201 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑎𝑑) → (𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
9594fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎𝑑) → (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
96 eqid 2610 . . . . . . . . . . . . . . 15 (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) = (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
97 fvex 6113 . . . . . . . . . . . . . . 15 (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) ∈ V
9895, 96, 97fvmpt 6191 . . . . . . . . . . . . . 14 ((𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) → ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9993, 98syl 17 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
10076, 99eqtr4d 2647 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)))
101100eqeq1d 2612 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
102101rexbidva 3031 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10331, 102bitrd 267 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
104103rabbidva 3163 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0})
105 simplll 794 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑀 ∈ ℕ0)
106 ovex 6577 . . . . . . . . . . . 12 (1...𝑀) ∈ V
1073, 106unex 6854 . . . . . . . . . . 11 ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V
108107a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V)
109 simpr 476 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))))
11057a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
111 id 22 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → 𝐹:(1...𝑁)⟶(1...𝑀))
112 incom 3767 . . . . . . . . . . . . . . 15 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ((1...𝑁) ∩ (ℤ ∖ ℕ))
113 fz1ssnn 12243 . . . . . . . . . . . . . . . 16 (1...𝑁) ⊆ ℕ
114 ssdisj 3978 . . . . . . . . . . . . . . . 16 (((1...𝑁) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅)
115113, 18, 114mp2an 704 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅
116112, 115eqtri 2632 . . . . . . . . . . . . . 14 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅
117116a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅)
118 fun 5979 . . . . . . . . . . . . 13 (((( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
119110, 111, 117, 118syl21anc 1317 . . . . . . . . . . . 12 (𝐹:(1...𝑁)⟶(1...𝑀) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
120 uncom 3719 . . . . . . . . . . . . 13 (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹) = (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))
121120feq1i 5949 . . . . . . . . . . . 12 ((( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)) ↔ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
122119, 121sylib 207 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶(1...𝑀) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
123122ad3antlr 763 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
124 mzprename 36330 . . . . . . . . . 10 ((((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))) ∧ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀))) → (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
125108, 109, 123, 124syl3anc 1318 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
1263, 16, 19eldioph4i 36394 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
127105, 125, 126syl2anc 691 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
128104, 127eqeltrd 2688 . . . . . . 7 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀))
129 eleq2 2677 . . . . . . . . 9 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ((𝑎𝐹) ∈ 𝑆 ↔ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
130129rabbidv 3164 . . . . . . . 8 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}})
131130eleq1d 2672 . . . . . . 7 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ({𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀) ↔ {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀)))
132128, 131syl5ibrcom 236 . . . . . 6 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
133132rexlimdva 3013 . . . . 5 (((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) → (∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
134133expimpd 627 . . . 4 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
13520, 134syl5bi 231 . . 3 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑆 ∈ (Dioph‘𝑁) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
136135impcom 445 . 2 ((𝑆 ∈ (Dioph‘𝑁) ∧ (𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
1371363impb 1252 1 ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   I cid 4948  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  𝑚 cmap 7744  cen 7838  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mzpcl 36304  df-mzp 36305  df-dioph 36337
This theorem is referenced by:  rabrenfdioph  36396
  Copyright terms: Public domain W3C validator