Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 5570
 Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 5563 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 5422 . . . . . 6 Rel 𝐴
3 coi1 5568 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2634 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5313 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 5556 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2634 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 5515 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2634 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  Rel wrel 5043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050 This theorem is referenced by:  relcoi1  5581  funcoeqres  6080  relexpaddg  13641  psrass1lem  19198  lindfres  19981  lindsmm  19986  kgencn2  21170  ustssco  21828  erdsze2lem2  30440  poimirlem9  32588  mzpresrename  36331  diophrw  36340  eldioph2  36343  diophren  36395  relexpiidm  37015  relexpaddss  37029  cotrclrcl  37053  funcrngcsetcALT  41791
 Copyright terms: Public domain W3C validator