Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpiidm Structured version   Visualization version   GIF version

Theorem relexpiidm 37015
Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexpiidm ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))

Proof of Theorem relexpiidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑥 = 0 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟0))
21eqeq1d 2612 . . . 4 (𝑥 = 0 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴)))
32imbi2d 329 . . 3 (𝑥 = 0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))))
4 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑦))
54eqeq1d 2612 . . . 4 (𝑥 = 𝑦 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)))
65imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))))
7 oveq2 6557 . . . . 5 (𝑥 = (𝑦 + 1) → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟(𝑦 + 1)))
87eqeq1d 2612 . . . 4 (𝑥 = (𝑦 + 1) → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))
98imbi2d 329 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
10 oveq2 6557 . . . . 5 (𝑥 = 𝑁 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑁))
1110eqeq1d 2612 . . . 4 (𝑥 = 𝑁 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
1211imbi2d 329 . . 3 (𝑥 = 𝑁 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))))
13 resiexg 6994 . . . . 5 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
14 relexp0g 13610 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
1513, 14syl 17 . . . 4 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
16 dmresi 5376 . . . . . . 7 dom ( I ↾ 𝐴) = 𝐴
17 rnresi 5398 . . . . . . 7 ran ( I ↾ 𝐴) = 𝐴
1816, 17uneq12i 3727 . . . . . 6 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = (𝐴𝐴)
19 unidm 3718 . . . . . 6 (𝐴𝐴) = 𝐴
2018, 19eqtri 2632 . . . . 5 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = 𝐴
2120reseq2i 5314 . . . 4 ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))) = ( I ↾ 𝐴)
2215, 21syl6eq 2660 . . 3 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))
23 relres 5346 . . . . . . . . . 10 Rel ( I ↾ 𝐴)
2423a1i 11 . . . . . . . . 9 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉) → Rel ( I ↾ 𝐴))
2513adantl 481 . . . . . . . . 9 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉) → ( I ↾ 𝐴) ∈ V)
2624, 25relexpsucrd 13618 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉) → (𝑦 ∈ ℕ0 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴))))
27263impia 1253 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)))
28 simp1 1054 . . . . . . . . 9 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))
2928coeq1d 5205 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)))
30 coires1 5570 . . . . . . . . 9 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ↾ 𝐴)
31 residm 5350 . . . . . . . . 9 (( I ↾ 𝐴) ↾ 𝐴) = ( I ↾ 𝐴)
3230, 31eqtri 2632 . . . . . . . 8 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴)
3329, 32syl6eq 2660 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴))
3427, 33eqtrd 2644 . . . . . 6 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))
35343exp 1256 . . . . 5 ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (𝐴𝑉 → (𝑦 ∈ ℕ0 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3635com13 86 . . . 4 (𝑦 ∈ ℕ0 → (𝐴𝑉 → ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3736a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)) → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
383, 6, 9, 12, 22, 37nn0ind 11348 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
3938impcom 445 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538   I cid 4948  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  Rel wrel 5043  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  0cn0 11169  𝑟crelexp 13608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-relexp 13609
This theorem is referenced by:  relexpmulg  37021  relexpxpmin  37028
  Copyright terms: Public domain W3C validator