MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexg Structured version   Visualization version   GIF version

Theorem resiexg 6994
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 6384). (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5346 . . 3 Rel ( I ↾ 𝐴)
2 simpr 476 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
3 eleq1 2676 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43biimpa 500 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
52, 4jca 553 . . . 4 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
6 vex 3176 . . . . . 6 𝑦 ∈ V
76opelres 5322 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴))
8 df-br 4584 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
96ideq 5196 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
108, 9bitr3i 265 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1110anbi1i 727 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
127, 11bitri 263 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
13 opelxp 5070 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
145, 12, 133imtr4i 280 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
151, 14relssi 5134 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
16 sqxpexg 6861 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
17 ssexg 4732 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
1815, 16, 17sylancr 694 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  Vcvv 3173  wss 3540  cop 4131   class class class wbr 4583   I cid 4948   × cxp 5036  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-res 5050
This theorem is referenced by:  ordiso  8304  wdomref  8360  dfac9  8841  relexp0g  13610  relexpsucnnr  13613  ndxarg  15715  idfu2nd  16360  idfu1st  16362  idfucl  16364  setcid  16559  equivestrcsetc  16615  pf1ind  19540  islinds2  19971  ausisusgra  25884  cusgraexilem1  25995  sizeusglecusg  26014  poimirlem15  32594  dib0  35471  dicn0  35499  cdlemn11a  35514  dihord6apre  35563  dihatlat  35641  dihpN  35643  eldioph2lem1  36341  eldioph2lem2  36342  dfrtrcl5  36955  dfrcl2  36985  relexpiidm  37015  ausgrusgrb  40395  upgrres1lem1  40528  usgrexi  40661  sizusglecusg  40679  rngcidALTV  41783  ringcidALTV  41846
  Copyright terms: Public domain W3C validator